Bioengineering a novel electromagnetic perspective gene as a tool for wireless control of excitable cells
生物工程新型电磁透视基因作为无线控制可兴奋细胞的工具
基本信息
- 批准号:9381612
- 负责人:
- 金额:$ 55.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-15 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:Adverse effectsArtificial cardiac pacemakerBasic ScienceBioinformaticsBiologicalBiological PacemakersBiomedical EngineeringBiosensorBrainBrain regionCalciumCardiacCatfishCell membraneCell physiologyCellsChemicalsClinicCloningComplementComplexContralateralDeep Brain StimulationDevelopmentDisciplineDiseaseEffectivenessElectrodesElectromagnetic FieldsElectromagneticsElectronicsElectrophysiology (science)EngineeringForelimbFutureGene ActivationGenesGenetic Crossing OverGenetic EngineeringGlassGoalsGrowthHealth SciencesHeatingHumanImageImmunohistochemistryImplantIon ChannelKineticsLeadLightLimb structureMagnetismMammalian CellMembraneMembrane ProteinsMethodologyMethodsMicroelectrodesModern MedicineMolecularMolecular BiologyMotorMotor CortexMotor Evoked PotentialsMotor outputNatureNeuromodulatorNeuronsNeurosciencesOocytesOrganismPharmaceutical PreparationsPopulationPower SourcesProteinsRattusSkeletal MuscleSliceSmooth MuscleSpecificityStructureTechnologyTemperatureTestingTissuesUltrasonographyWireless TechnologyWorkXenopus laevisassociated symptombasecDNA Librarydesignelectromagnetismelectronic pacemakerexcitatory neuronexpression cloningimprovedin vivoinfancyinhibitory neuronmotor controlneural circuitneuronal excitabilityneuroregulationnew technologynovelpromoterreceptorreduce symptomsresponsesensorskillssynthetic biologytechnology developmenttooltransmission process
项目摘要
Abstract:
The ability to manipulate neuronal function in the living brain has a major impact both on
human health and basic sciences. In the past half century, neuronal modulation via implantable
microelectrodes in specific brain regions has been used to relief symptoms associated with a
variety of neuronal disorders. However, this approach suffers from the need to implant complex,
large and expansive electronic devices that depend on an external power supply, and the
unexpected and undesirable side effects that the actual placement of the neurostimulation
electrodes often produces. Recently, major advances in molecular and synthetic biology
facilitated the cloning and optimization of receptors and channels that allow modulation of
neuronal function in response to light, chemicals or temperature. However, the control of these
proteins requires invasive delivery of the activator. Therefore, a non-invasive, remote controlled
neuromodulator that can manipulate specific neuronal population in a non-invasive manner is an
unmet need.
To embark upon this challenge, we have investigated the potential of an alternative and
novel method to remotely control cellular function through the transmission of non-invasive,
electromagnetic fields (EMF). Using expression cloning, we have identified and cloned a single
gene that encodes to a protein that responds to EMF. This unique gene has never been
characterized before and was termed electromagnetic perceptive gene (EPG). EPG was cloned
and expressed in mammalian cells, neuronal cultures and in rat’s brain. Immunohistochemistry
showed that the expression of EPG is confined to the mammalian cell membrane, and that it
can be expressed in a specific population, and in specific brain regions of the rat. Calcium
imaging in mammalian cells and cultured neurons expressing EPG demonstrated that remote
activation by EMF significantly increases intracellular calcium concentrations, indicative of
cellular excitability. Moreover, wireless magnetic activation of EPG in rat motor cortex induced
motor evoked responses of the contralateral forelimb in vivo. We hypothesize that the EPG
technology will enable wireless control of neuronal function with cell, region and
temporal specificity. Here we propose to thoroughly characterize the EPG in the cellular,
molecular and functional levels. We will also test the effectiveness of the EPG technology to
wirelessly control neuronal function in vivo.
We anticipate that this new technology would transform the future of neuromodulation,
complement existing neuromodulation tools, and considerably contribute to the understanding of
complex neural circuits.
摘要:
在活体大脑中操纵神经元功能的能力对神经元的功能产生了重大影响。
人类健康和基础科学。在过去的半个世纪,通过植入的神经元调制
在特定的大脑区域的微电极已被用于缓解与脑缺血相关的症状。
各种神经元疾病。然而,这种方法需要植入复杂的,
依赖外部电源的大型且昂贵的电子设备,以及
神经刺激的实际放置
电极经常产生。最近,分子和合成生物学的主要进展
促进了受体和通道的克隆和优化,
神经元对光、化学物质或温度的反应。然而,控制这些
蛋白质需要活化剂的侵入性递送。因此,一种非侵入性的、远程控制的
能够以非侵入性方式操纵特定神经元群体的神经调节剂是一种
未满足的需求
为了应对这一挑战,我们研究了替代方案的潜力,
一种通过非侵入性传输远程控制细胞功能的新方法,
电磁场(EMF)使用表达克隆,我们已经鉴定并克隆了一个
编码对电动势做出反应的蛋白质的基因。这种独特的基因从未被
电磁感知基因(Electromagnetic Perceptive Gene,EPG)是一种新的电磁感知基因。EPG被克隆
并在哺乳动物细胞、神经元培养物和大鼠脑中表达。免疫组
表明EPG的表达局限于哺乳动物细胞膜,
可以在特定的群体中表达,并且在大鼠的特定脑区域中表达。钙
在哺乳动物细胞和表达EPG的培养神经元中的成像表明,
EMF激活显著增加细胞内钙浓度,表明
细胞兴奋性此外,无线磁激活大鼠运动皮层的EPG诱导,
运动诱发反应的对侧前肢在体内。我们假设EPG
技术将使无线控制神经元功能成为可能,
时间特异性在这里,我们建议彻底表征EPG在蜂窝,
分子和功能水平。我们还将测试EPG技术的有效性,
无线控制体内神经元功能。
我们预计这项新技术将改变神经调节的未来,
补充现有的神经调节工具,并大大有助于理解
复杂的神经回路
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Assaf A Gilad其他文献
Cardiac CEST-MRI for tracking stem cell survival and determining the role of CXCL2
- DOI:
10.1186/1532-429x-18-s1-p262 - 发表时间:
2016-01-27 - 期刊:
- 影响因子:
- 作者:
Lina Alon;Dara Kraitchman;Michael Schär;Angel Cortez;Nirbhay N Yadav;Judy Cook;Peter V Johnston;Rebecca Krimins;Michael T McMahon;Peter van Zijl;Jeff W Bulte;Assaf A Gilad - 通讯作者:
Assaf A Gilad
Assaf A Gilad的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Assaf A Gilad', 18)}}的其他基金
Semi-synthetic, magneto-photonic circuit for non-invasive control of cellular function
用于非侵入性控制细胞功能的半合成磁光子电路
- 批准号:
10277517 - 财政年份:2021
- 资助金额:
$ 55.44万 - 项目类别:
Molecular Imaging for Detection of Synthetic Biology Circuits, Oscillators and Toggle Switches in Regenerative Medicine
用于检测再生医学中的合成生物学电路、振荡器和拨动开关的分子成像
- 批准号:
10176612 - 财政年份:2018
- 资助金额:
$ 55.44万 - 项目类别:
Bioengineering a novel electromagnetic perspective gene as a tool for wireless control of excitable cells
生物工程新型电磁透视基因作为无线控制可兴奋细胞的工具
- 批准号:
10200903 - 财政年份:2017
- 资助金额:
$ 55.44万 - 项目类别:
Adaptive control of epileptic seizures using a genetically encoded sensor
使用基因编码传感器自适应控制癫痫发作
- 批准号:
8733830 - 财政年份:2012
- 资助金额:
$ 55.44万 - 项目类别:
Adaptive control of epileptic seizures using a genetically encoded sensor
使用基因编码传感器自适应控制癫痫发作
- 批准号:
8445212 - 财政年份:2012
- 资助金额:
$ 55.44万 - 项目类别:
Adaptive control of epileptic seizures using a genetically encoded sensor
使用基因编码传感器自适应控制癫痫发作
- 批准号:
8599497 - 财政年份:2012
- 资助金额:
$ 55.44万 - 项目类别:
Adaptive control of epileptic seizures using a genetically encoded sensor
使用基因编码传感器自适应控制癫痫发作
- 批准号:
8333669 - 财政年份:2012
- 资助金额:
$ 55.44万 - 项目类别:
Adaptive control of epileptic seizures using a genetically encoded sensor
使用基因编码传感器自适应控制癫痫发作
- 批准号:
8789397 - 财政年份:2012
- 资助金额:
$ 55.44万 - 项目类别:
Imaging of gene delivery in the central nervous system
中枢神经系统基因传递的成像
- 批准号:
7659274 - 财政年份:2009
- 资助金额:
$ 55.44万 - 项目类别:
Imaging of gene delivery in the central nervous system
中枢神经系统基因传递的成像
- 批准号:
7858506 - 财政年份:2009
- 资助金额:
$ 55.44万 - 项目类别: