Cell Type and Circuit Mechanisms of Non-Invasive Brain Stimulation by Sensory Entrainment
感觉传导非侵入性脑刺激的细胞类型和电路机制
基本信息
- 批准号:10275301
- 负责人:
- 金额:$ 257.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:ATAC-seqAcoustic StimulationAcuteAnimal ModelAreaAuditoryBasic ScienceBiologicalBiological ModelsBrainBrain DiseasesCellsChronicCommunitiesComplexComputer ModelsCouplingDataDevelopmentElectrophysiology (science)Epigenetic ProcessExperimental ModelsFree WillFrequenciesFutureGene Expression ProfilingGenetic TranscriptionHourIndividualKnowledgeLabelLightLinkMapsMediatingMemoryMicrogliaModelingModificationMolecularMorphologyMusNatureNerve DegenerationNeurogliaNeuronsOpticsPathway interactionsPatternPeriodicityPhotic StimulationPhysiologyPopulationPrefrontal CortexPropertyRoleSensoryStructureTechniquesTestingTherapeuticVasodilationarea V1area striataawakebrain cellcell typecognitive functionconstrictionepigenomicsexperimental studyin vivoinsightmouse modelmultimodalityneural patterningnoninvasive brain stimulationoptogeneticspredictive modelingrelating to nervous systemresponsesimulationsingle-cell RNA sequencingtooltranscriptomicsvasomotion
项目摘要
Cell Type and Circuit Mechanisms of Non-Invasive Brain Stimulation by Sensory Entrainment
Patterned sensory stimulation (PSS) is a non-invasive technique for manipulating brain activity and states,
typically employing periodic light flicker or auditory tones presented at regular intervals. We and others have
recently shown that PSS at certain frequencies (centered at 40 Hz) causes widespread neural entrainment and
state changes in non-neuronal cell populations (including, e.g., effects on the activity of microglia and on
vasomotion), improvements in memory and cognitive function, and clearance of markers of neurodegeneration
in animal models of brain disease. These observations suggest a strong potential of PSS for non-invasive brain
stimulation applications in basic science and as a therapeutic tool.
To enable such applications, however, it is important to know the mechanisms mediating the complex effects
of PSS on neurons and non-neuronal cells. These mechanisms are poorly understood. In this project, we
systematically investigate mechanisms of PSS by dissecting how cell types and circuit properties in the brain
mediate the entrainment of neural activity and modifications of the states of neuronal and non-neuronal cell
populations, with the focus on the mouse cortex as a model system.
The central component of this project is a systematic modeling effort, relying on our recent progress in
integrating diverse structural and functional data into highly detailed, bio-realistic models of the mouse cortical
circuits. These models will be applied and refined to simulate the effects of PSS at the level of a single cortical
area (primary visual cortex) and the whole mouse cortex. We will also develop models of coupling from the
activity of different neuron types to non-neuronal cells, providing insights into the effects of neuronal
entrainment to PSS on, e.g., microglia and vasculature.
These modeling efforts will go hand-in-hand with electrophysiology recordings in awake mice, accompanied by
chronic and acute perturbations (using chemogenetics and optogenetics). In multiple iterative stages, modeling
predictions regarding the roles of excitatory and inhibitory (e.g., PV, SST, VIP) cell types in different cortical
layers on the entrainment to PSS will be tested experimentally, and models will be refined to match data. The
project will also characterize transcriptomic and epigenetic responses to PSS in different cell types, which will
be correlated with circuit effects revealed by simulations and perturbative experiments in vivo.
The results of these studies will provide a rich description of molecular, cell type, and circuit mechanisms
mediating the PSS effects, which will be crucial for future rational development of applications of this brain
stimulation technique. Besides the knowledge, this project will also provide highly biologically realistic, ready-
to-use computational models applicable for studies of PSS and other phenomena, which we will freely share
with the community.
非侵入性脑刺激的细胞类型和回路机制
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Uncovering circuit mechanisms of current sinks and sources with biophysical simulations of primary visual cortex.
- DOI:10.7554/elife.87169
- 发表时间:2023-07-24
- 期刊:
- 影响因子:7.7
- 作者:Rimehaug AE;Stasik AJ;Hagen E;Billeh YN;Siegle JH;Dai K;Olsen SR;Koch C;Einevoll GT;Arkhipov A
- 通讯作者:Arkhipov A
Coordinated changes in a cortical circuit sculpt effects of novelty on neural dynamics.
皮质回路的协调变化塑造了新奇事物对神经动力学的影响。
- DOI:10.1101/2023.10.21.563440
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Ito,Shinya;Piet,Alex;Bennett,Corbett;Durand,Séverine;Belski,Hannah;Garrett,Marina;Olsen,ShawnR;Arkhipov,Anton
- 通讯作者:Arkhipov,Anton
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANTON ARKHIPOV其他文献
ANTON ARKHIPOV的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANTON ARKHIPOV', 18)}}的其他基金
Bridging Function, Connectivity, and Transcriptomics of Mouse Cortical Neurons
小鼠皮质神经元的桥接功能、连接性和转录组学
- 批准号:
10688081 - 财政年份:2022
- 资助金额:
$ 257.2万 - 项目类别:
Advancing Bio-Realistic Modeling via the Brain Modeling ToolKit and SONATA Data Format
通过大脑建模工具包和 SONATA 数据格式推进生物真实建模
- 批准号:
10306896 - 财政年份:2021
- 资助金额:
$ 257.2万 - 项目类别:
Advancing Bio-Realistic Modeling via the Brain Modeling ToolKit and SONATA Data Format
通过大脑建模工具包和 SONATA 数据格式推进生物真实建模
- 批准号:
10477439 - 财政年份:2021
- 资助金额:
$ 257.2万 - 项目类别:
Modeling the structure-function relation in a reconstructed cortical tissue
对重建皮质组织中的结构-功能关系进行建模
- 批准号:
10005712 - 财政年份:2020
- 资助金额:
$ 257.2万 - 项目类别:
ACCELERATION OF MOLECULAR MODELING APPLICATIONS WITH GRAPHICS PROCESSORS
使用图形处理器加速分子建模应用
- 批准号:
7723602 - 财政年份:2008
- 资助金额:
$ 257.2万 - 项目类别:
相似海外基金
Binaural cue sensitivity in children and adults with combined electric and acoustic stimulation
电和声相结合刺激儿童和成人的双耳提示敏感性
- 批准号:
10585556 - 财政年份:2022
- 资助金额:
$ 257.2万 - 项目类别:
Place-Based Mapping in Electric-Acoustic Stimulation Listeners
电声刺激听众中的基于位置的映射
- 批准号:
10320457 - 财政年份:2021
- 资助金额:
$ 257.2万 - 项目类别:
Electro-acoustic stimulation assisted nano-abrasive blasting system
电声刺激辅助纳米磨料喷砂系统
- 批准号:
20K04192 - 财政年份:2020
- 资助金额:
$ 257.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
id-ear: biometric recognition based on response to acoustic stimulation
id-ear:基于对声刺激的响应的生物识别
- 批准号:
505807-2016 - 财政年份:2018
- 资助金额:
$ 257.2万 - 项目类别:
Collaborative Research and Development Grants
Characterization and Modelling of the Electrode-Nerve Interface for Electro-Acoustic Stimulation in Cochlear Implant Users
用于人工耳蜗用户电声刺激的电极-神经接口的表征和建模
- 批准号:
396932747 - 财政年份:2018
- 资助金额:
$ 257.2万 - 项目类别:
Research Grants
Bubbles for bone: acoustic stimulation for drug delivery in fracture repair.
骨气泡:骨折修复中用于药物输送的声刺激。
- 批准号:
1960951 - 财政年份:2017
- 资助金额:
$ 257.2万 - 项目类别:
Studentship
Bubbles for bone: acoustic stimulation for drug delivery in fracture repair.
骨气泡:骨折修复中用于药物输送的声刺激。
- 批准号:
1946034 - 财政年份:2017
- 资助金额:
$ 257.2万 - 项目类别:
Studentship
id-ear: biometric recognition based on response to acoustic stimulation
id-ear:基于对声刺激的响应的生物识别
- 批准号:
505807-2016 - 财政年份:2017
- 资助金额:
$ 257.2万 - 项目类别:
Collaborative Research and Development Grants
Bubbles for bone: acoustic stimulation for drug delivery in fracture repair
骨气泡:骨折修复中用于药物输送的声刺激
- 批准号:
1938424 - 财政年份:2017
- 资助金额:
$ 257.2万 - 项目类别:
Studentship
Bubbles for biofilm: acoustic stimulation for drug delivery in fracture repair
生物膜气泡:骨折修复中药物输送的声刺激
- 批准号:
1938469 - 财政年份:2017
- 资助金额:
$ 257.2万 - 项目类别:
Studentship














{{item.name}}会员




