Advancing Bio-Realistic Modeling via the Brain Modeling ToolKit and SONATA Data Format

通过大脑建模工具包和 SONATA 数据格式推进生物真实建模

基本信息

  • 批准号:
    10306896
  • 负责人:
  • 金额:
    $ 66.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2027-02-28
  • 项目状态:
    未结题

项目摘要

Advancing Bio-Realistic Modeling via the Brain Modeling ToolKit and SONATA Data Format One of the major goals of the BRAIN Initiative is to distill complex, multi-modal data into predictive frameworks via theory/modeling. As the planning document "BRAIN 2025: A Scientific Vision" urges, “theory and modeling should be woven into successive stages of ongoing experiments, enabling bridges to be built from single cells to connectivity, population dynamics, and behavior.” However, data-driven, bio-realistic modeling is not widely practiced, in part because the field needs software supporting such complex modeling and standards for model sharing and reproducibility. The Allen Institute has developed two powerful tools addressing these needs. One is the Brain Modeling ToolKit (BMTK) – a software suite for model building and simulation at multiple levels of resolution, from networks of biophysically detailed neuronal models, to point-neuron networks, to population-statistics approaches. The other one is the SONATA (Scalable Open Network Architecture TemplAte) data format, which provides computationally efficient solutions for storing and exchanging data describing all stages of the modeling workflow (e.g., structure of model networks, configuration of simulations, simulation outputs). These tools were developed in coordination with many initiatives, such as NEURON, NEST, Neurodata Without Borders, NeuroML, PyNN, NetPyNE, and the Human Brain Project. As a result, BMTK and SONATA enable many applications and have generated substantial interest, with many users already employing these tools. Most recently, BMTK and SONATA were instrumental in integrating diverse data from the Allen Institute and from the literature into some of the most sophisticated and bio-realistic models of a brain region to date. We propose to build a comprehensive user support and dissemination platform for BMTK and SONATA and help integrate these tools into model building and simulation practices in the community. In addition, the Allen Institute team joins forces with a University of Illinois team that developed a widely used molecular visualization software VMD. By integrating this software with SONATA, we will leverage its powerful existing capabilities to offer a free, highly efficient visualization tool for neuroscience modeling. Together, these tools will facilitate free exchange and reproducibility of models and support sophisticated modeling work – especially in cases of large-scale biologically realistic models relying on systematic integration of experimental data – for novice and expert users alike. These contributions will advance the BRAIN Initiative’s priority areas of Theory and Data Analysis and Integrated Approaches and will strongly facilitate FAIRness (Findability, Accessibility, Interoperability, and Reuse of digital assets) in neuroscience modeling.
通过大脑建模工具包和SONATA数据格式推进生物逼真建模

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ANTON ARKHIPOV其他文献

ANTON ARKHIPOV的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ANTON ARKHIPOV', 18)}}的其他基金

Bridging Function, Connectivity, and Transcriptomics of Mouse Cortical Neurons
小鼠皮质神经元的桥接功能、连接性和转录组学
  • 批准号:
    10688081
  • 财政年份:
    2022
  • 资助金额:
    $ 66.24万
  • 项目类别:
Advancing Bio-Realistic Modeling via the Brain Modeling ToolKit and SONATA Data Format
通过大脑建模工具包和 SONATA 数据格式推进生物真实建模
  • 批准号:
    10477439
  • 财政年份:
    2021
  • 资助金额:
    $ 66.24万
  • 项目类别:
Cell Type and Circuit Mechanisms of Non-Invasive Brain Stimulation by Sensory Entrainment
感觉传导非侵入性脑刺激的细胞类型和电路机制
  • 批准号:
    10275301
  • 财政年份:
    2021
  • 资助金额:
    $ 66.24万
  • 项目类别:
Modeling the structure-function relation in a reconstructed cortical tissue
对重建皮质组织中的结构-功能关系进行建模
  • 批准号:
    10005712
  • 财政年份:
    2020
  • 资助金额:
    $ 66.24万
  • 项目类别:
ACCELERATION OF MOLECULAR MODELING APPLICATIONS WITH GRAPHICS PROCESSORS
使用图形处理器加速分子建模应用
  • 批准号:
    7723602
  • 财政年份:
    2008
  • 资助金额:
    $ 66.24万
  • 项目类别:
MOLECULAR BASIS OF BACTERIAL MOTILITY
细菌运动的分子基础
  • 批准号:
    7601255
  • 财政年份:
    2007
  • 资助金额:
    $ 66.24万
  • 项目类别:

相似国自然基金

层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
  • 批准号:
    2021JJ40433
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
  • 批准号:
    32001603
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
AREA国际经济模型的移植.改进和应用
  • 批准号:
    18870435
  • 批准年份:
    1988
  • 资助金额:
    2.0 万元
  • 项目类别:
    面上项目

相似海外基金

Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
  • 批准号:
    2322614
  • 财政年份:
    2024
  • 资助金额:
    $ 66.24万
  • 项目类别:
    Standard Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
  • 批准号:
    534092360
  • 财政年份:
    2024
  • 资助金额:
    $ 66.24万
  • 项目类别:
    Major Research Instrumentation
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
  • 批准号:
    ES/Z50290X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 66.24万
  • 项目类别:
    Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
  • 批准号:
    NE/Y003365/1
  • 财政年份:
    2024
  • 资助金额:
    $ 66.24万
  • 项目类别:
    Research Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326714
  • 财政年份:
    2024
  • 资助金额:
    $ 66.24万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427233
  • 财政年份:
    2024
  • 资助金额:
    $ 66.24万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326713
  • 财政年份:
    2024
  • 资助金额:
    $ 66.24万
  • 项目类别:
    Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
  • 批准号:
    24K20765
  • 财政年份:
    2024
  • 资助金额:
    $ 66.24万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427232
  • 财政年份:
    2024
  • 资助金额:
    $ 66.24万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427231
  • 财政年份:
    2024
  • 资助金额:
    $ 66.24万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了