Modeling the structure-function relation in a reconstructed cortical tissue
对重建皮质组织中的结构-功能关系进行建模
基本信息
- 批准号:10005712
- 负责人:
- 金额:$ 134.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-14 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:Artificial IntelligenceBiologicalBrainCase StudyCellsCodeCognitionCommunitiesComplementCoupledDataData SetDatabasesDependenceDiseaseElectron MicroscopyExhibitsFutureIndividualInstitutesLearningLiteratureMeasurementModelingMorphologyMusNeuronsNeurosciencesPatternPerceptionPhysiologyPropertyRecording of previous eventsResourcesScienceScientistStructural ModelsStructureStructure-Activity RelationshipSynapsesTestingTheoretical modelTimeTissuesVisual CortexWorkarea V1area striatabasecell typeconnectomedesignexperimental studyimprovedin vivomodels and simulationnetwork modelsreconstructionrelating to nervous systemsimulationstatisticstheoriestool
项目摘要
Abstract
How is connectivity between neurons related to patterns of activity exhibited by these neurons in vivo? This
question of structure-function relations in brain circuits is of fundamental importance. Answering it in a
quantitative manner would have far-reaching consequences both for our theories of how brain works and for
applications ranging from better disease treatments to new tools for artificial intelligence. However, our current
understanding of structure-function relations is relatively poor, in large part because the fine structure of
neuronal connectivity has remained largely unknown. In turn, this severely limits connecting modeling to
theoretical efforts. This problem is particularly challenging in the case of studying the highly heterogeneous
cortical circuits, which are involved in important functions like perception, cognition, and learning.
Fortunately, recent experimental work by our collaborators at the Allen Institute for Brain Science is now
resulting in transformational new datasets that characterize connectivity in the mouse cortical area V1 at the
level of Cell Types using multi-patch synaptic physiology and at the level of individual neurons using electron
microscopy (EM). For the first time in history of neuroscience, we will have connectome of individual neurons
coupled with dense recordings of activity in ~1 mm3 of V1, plus systematic characterization of synaptic
properties.
We will leverage these unique datasets to build and share with the community new models of V1 and use
them to study the relationships between cortical connectivity and in vivo activity and computations. We will
analyze how multiple features of neuronal code depend on individual cell properties and on higher-order
connectivity motifs, which are present in the EM connectome, but not in the statistics-based connectivity
inferred from sparse measurements at the Cell Types level or from existing literature. We also will evaluate the
consistency of the new models of V1 with predictions made by current theories of structure-function relations.
These models and simulations will be freely shared with the community as a resource that scientists will
use to guide future experiment designs, improve biological realism in models, and assist in generating and
testing theories. By providing a rich and biologically realistic framework for new theoretical, modeling, and
experimental studies, this resource will fuel new discoveries regarding relations between the structure and
function of cortical circuits.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANTON ARKHIPOV其他文献
ANTON ARKHIPOV的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANTON ARKHIPOV', 18)}}的其他基金
Bridging Function, Connectivity, and Transcriptomics of Mouse Cortical Neurons
小鼠皮质神经元的桥接功能、连接性和转录组学
- 批准号:
10688081 - 财政年份:2022
- 资助金额:
$ 134.98万 - 项目类别:
Advancing Bio-Realistic Modeling via the Brain Modeling ToolKit and SONATA Data Format
通过大脑建模工具包和 SONATA 数据格式推进生物真实建模
- 批准号:
10306896 - 财政年份:2021
- 资助金额:
$ 134.98万 - 项目类别:
Advancing Bio-Realistic Modeling via the Brain Modeling ToolKit and SONATA Data Format
通过大脑建模工具包和 SONATA 数据格式推进生物真实建模
- 批准号:
10477439 - 财政年份:2021
- 资助金额:
$ 134.98万 - 项目类别:
Cell Type and Circuit Mechanisms of Non-Invasive Brain Stimulation by Sensory Entrainment
感觉传导非侵入性脑刺激的细胞类型和电路机制
- 批准号:
10275301 - 财政年份:2021
- 资助金额:
$ 134.98万 - 项目类别:
ACCELERATION OF MOLECULAR MODELING APPLICATIONS WITH GRAPHICS PROCESSORS
使用图形处理器加速分子建模应用
- 批准号:
7723602 - 财政年份:2008
- 资助金额:
$ 134.98万 - 项目类别:
相似海外基金
CAREER: Computing rules of the social brain: behavioral mechanisms of function and dysfunction in biological collectives
职业:社会大脑的计算规则:生物集体中功能和功能障碍的行为机制
- 批准号:
2338596 - 财政年份:2024
- 资助金额:
$ 134.98万 - 项目类别:
Continuing Grant
THE NIH NEUROBIOBANK BRAIN AND TISSUE REPOSITORY (NBTR) TO PROVIDE SERVICES THAT WILL ACTIVELY ACQUIRE, RECEIVE, STORE, CURATE, PRESERVE, AND DISTRIBUTE CNS AND RELATED BIOLOGICAL SPECIMENS TO QUALIFI
NIH NEUROBIOBANK 大脑和组织存储库 (NBTR) 提供积极获取、接收、存储、整理、保存和分发 CNS 及相关生物样本的服务,以确保符合资格
- 批准号:
10948523 - 财政年份:2023
- 资助金额:
$ 134.98万 - 项目类别:
Investigating brain health and episodic memory function at midlife: the role of biological sex and menopause status
研究中年时的大脑健康和情景记忆功能:生物性别和更年期状态的作用
- 批准号:
494149 - 财政年份:2023
- 资助金额:
$ 134.98万 - 项目类别:
Operating Grants
Understanding of biological mechanisms of resilience based on gut-brain axis
基于肠脑轴的弹性生物学机制的理解
- 批准号:
23K17634 - 财政年份:2023
- 资助金额:
$ 134.98万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Understanding the link between sociocultural and biological factors to brain health across race & ethnicity in midlife
了解社会文化和生物因素与跨种族大脑健康之间的联系
- 批准号:
10429375 - 财政年份:2022
- 资助金额:
$ 134.98万 - 项目类别:
Understanding the link between sociocultural and biological factors to brain health across race & ethnicity in midlife
了解社会文化和生物因素与跨种族大脑健康之间的联系
- 批准号:
10627936 - 财政年份:2022
- 资助金额:
$ 134.98万 - 项目类别:
The impact of biological sex on the brain language network
生物性别对大脑语言网络的影响
- 批准号:
RGPIN-2022-04409 - 财政年份:2022
- 资助金额:
$ 134.98万 - 项目类别:
Discovery Grants Program - Individual
Development of blood-brain barrier-crossing antibodies utilizing the biological features of glucose transporters
利用葡萄糖转运蛋白的生物学特性开发血脑屏障跨越抗体
- 批准号:
21K18268 - 财政年份:2021
- 资助金额:
$ 134.98万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
CAREER: Biological Timing and Brain Circuits: Circadian influences on Prefrontal Cortex function
职业:生物计时和大脑回路:昼夜节律对前额皮质功能的影响
- 批准号:
2042207 - 财政年份:2020
- 资助金额:
$ 134.98万 - 项目类别:
Continuing Grant
Regulation and biological functions of mRNA Alternative Polyadenylation in the Brain
大脑中 mRNA 选择性多聚腺苷酸化的调节和生物学功能
- 批准号:
10334512 - 财政年份:2020
- 资助金额:
$ 134.98万 - 项目类别: