Bridging Function, Connectivity, and Transcriptomics of Mouse Cortical Neurons
小鼠皮质神经元的桥接功能、连接性和转录组学
基本信息
- 批准号:10688081
- 负责人:
- 金额:$ 283.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AnatomyAnimalsArchitectureAreaArousalAtlasesBrainCalciumCellsCharacteristicsCodeCommunitiesComplementComputer softwareDataData AnalysesData SetDiseaseElectron MicroscopyElectrophysiology (science)EvolutionFluorescent in Situ HybridizationFutureGene ExpressionGene Expression ProfileGrainImageIn Situ HybridizationIndividualInfrastructureKnowledgeLearningLinkLocationLocomotionMapsMeasuresMethodsMissionModalityMolecularMonitorMorphologyMotionMotor ActivityMovementMusNatureNeuronsNeurosciencesNoisePathologyPathway interactionsPatternProcessPropertyResearchResourcesRoleStimulusStreamStructureSubcellular AnatomyTaxonomyTimeTissue imagingTissuesVisualVisual Cortexarea V1area striataawakebrain cellcell typeconnectome datadata sharingelectrical propertyexcitatory neuronexperimental studyin vivoin vivo calcium imagingin vivo imaginginhibitory neuronlensmicroscopic imagingmovieneuralneuroimagingonline resourcepatch sequencingpreferencereconstructionresponsesegregationtooltranscriptomicsvisual informationvisual processingvisual stimulus
项目摘要
Bridging Function, Connectivity, and Transcriptomics of Mouse Cortical Neurons
The versatile and powerful functional properties of the brain are reflected in the neuronal activity patterns and
computations, and their evolution over time due to learning, homeostatic plasticity, and other processes. The
composition of brain circuits out of a large number of cell types, which may be defined by the characteristic
patterns of gene expression, and the intricate connectivity of these circuits are expected to be intimately
related to their functional properties.
However, the exact nature of these relationships is far from clear. The concept of a cell type itself, especially
when considered at a fine-grained level, with a hundred or more cell types in any given brain area, is under
active research in the community. A central question is whether and how transcriptomically-defined cell types
provide specific underpinnings for broader circuit properties, such as those expressed in anatomy – defined by
neuron’s location, morphology, connectivity – or in the functional types of neuronal activity in vivo.
The proposed project will address this question by investigating the links between molecular and anatomical
cell types to circuits and function in the mouse primary visual cortex (V1). We will connect the types of
functional visual responses in vivo with transcriptomic types via multiplexed fluorescence in-situ hybridization
(mFISH). Calcium imaging of neural activity will be carried out across the full cortical depth in V1, co-registered
with mFISH imaging of that tissue, and the transcriptomic types of the neurons will be determined, establishing
links between each neuron’s function and its type.
In parallel, we will use a unique functional connectomics dataset already obtained at the Allen Institute, in
which Electron Microscopy (EM) images are co-registered with in vivo imaging data from V1. These data will
permit us to map the functional properties of each neuron to its morphological type and connectivity
characteristics, resolved in the EM volume. The morphological type will, in turn, allow us to compare this
dataset with the transcriptomic types, using our earlier PatchSeq dataset, where triple-modality data of
morphology, intrinsic electrophysiology, and transcriptomics was obtained for individual neurons.
These data and analyses will be freely shared with the scientific community. We will provide a web-based
resource through the Allen Institute Cell Type Cards portal, linking across transcriptomic, morphological,
connectivity, and functional types in these datasets.
Thus, this project will uncover the relations between transcriptomic types, cortical circuit structure, and its
function, while providing a major resource for a broad spectrum of future studies in this area.
小鼠皮质神经元的桥接功能、连接和转录
大脑的多功能性和强大的功能特性反映在神经元的活动模式和
计算,以及它们由于学习、稳态可塑性和其他过程而随时间的演变。这个
由大量细胞类型组成的大脑回路,这可以由特征来定义
基因表达的模式,以及这些回路的复杂连接预计将密切相关
与它们的功能特性有关。
然而,这些关系的确切性质还远不清楚。细胞类型本身的概念,尤其是
当考虑到细粒度水平时,在任何给定的大脑区域中有100种或更多类型的细胞,
在社区中积极开展研究。一个中心问题是,是否以及如何在转录水平上定义细胞类型
为更广泛的电路特性提供特定的基础,例如由
神经元的位置、形态、连通性--或在体内神经元活动的功能类型。
拟议的项目将通过研究分子和解剖学之间的联系来解决这个问题。
小鼠初级视皮层(V1)的细胞类型到回路和功能。我们将连接以下类型
多重荧光原位杂交法检测转录型在体视功能反应
(MFISH)。神经活动的钙成像将在V1的全皮质深度进行,共同注册
通过对该组织的mFISH成像,将确定神经元的转录类型,建立
每个神经元的功能和它的类型之间的联系。
同时,我们将使用艾伦研究所已经获得的独特的功能连接学数据集
这些电子显微镜(EM)图像与来自V1的活体成像数据共同配准。这些数据将
允许我们将每个神经元的功能属性映射到其形态类型和连接性
特征,在EM卷中解析。形态类型反过来将允许我们比较这一点
具有转录类型的数据集,使用我们之前的PatchSeq数据集,其中
获得了单个神经元的形态、内在电生理学和转录剪切学。
这些数据和分析将免费与科学界共享。我们将提供基于Web的
通过艾伦研究所细胞类型卡门户网站,链接转录、形态、
连接性和这些数据集中的函数类型。
因此,这个项目将揭示转录类型、大脑皮层回路结构和其
功能,同时为这一领域的广泛未来研究提供主要资源。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANTON ARKHIPOV其他文献
ANTON ARKHIPOV的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANTON ARKHIPOV', 18)}}的其他基金
Advancing Bio-Realistic Modeling via the Brain Modeling ToolKit and SONATA Data Format
通过大脑建模工具包和 SONATA 数据格式推进生物真实建模
- 批准号:
10306896 - 财政年份:2021
- 资助金额:
$ 283.39万 - 项目类别:
Advancing Bio-Realistic Modeling via the Brain Modeling ToolKit and SONATA Data Format
通过大脑建模工具包和 SONATA 数据格式推进生物真实建模
- 批准号:
10477439 - 财政年份:2021
- 资助金额:
$ 283.39万 - 项目类别:
Cell Type and Circuit Mechanisms of Non-Invasive Brain Stimulation by Sensory Entrainment
感觉传导非侵入性脑刺激的细胞类型和电路机制
- 批准号:
10275301 - 财政年份:2021
- 资助金额:
$ 283.39万 - 项目类别:
Modeling the structure-function relation in a reconstructed cortical tissue
对重建皮质组织中的结构-功能关系进行建模
- 批准号:
10005712 - 财政年份:2020
- 资助金额:
$ 283.39万 - 项目类别:
ACCELERATION OF MOLECULAR MODELING APPLICATIONS WITH GRAPHICS PROCESSORS
使用图形处理器加速分子建模应用
- 批准号:
7723602 - 财政年份:2008
- 资助金额:
$ 283.39万 - 项目类别:
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 283.39万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 283.39万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 283.39万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 283.39万 - 项目类别:
Discovery Early Career Researcher Award
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 283.39万 - 项目类别:
Continuing Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
- 批准号:
2337595 - 财政年份:2023
- 资助金额:
$ 283.39万 - 项目类别:
Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
- 批准号:
23K17514 - 财政年份:2023
- 资助金额:
$ 283.39万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Analysis of thermoregulatory mechanisms by the CNS using model animals of female-dominant infectious hypothermia
使用雌性传染性低体温模型动物分析中枢神经系统的体温调节机制
- 批准号:
23KK0126 - 财政年份:2023
- 资助金额:
$ 283.39万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
- 批准号:
2842926 - 财政年份:2023
- 资助金额:
$ 283.39万 - 项目类别:
Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
- 批准号:
NC/X001644/1 - 财政年份:2023
- 资助金额:
$ 283.39万 - 项目类别:
Training Grant














{{item.name}}会员




