STAMP technology to enable single-cell and isoform-sensitive detection of RBP sites

STAMP 技术可实现 RBP 位点的单细胞和亚型敏感检测

基本信息

项目摘要

PROJECT SUMMARY RNA-binding proteins (RBPs) interact with RNA molecules from synthesis to decay to control their metabolism, subcellular localization, stability and translation. Methods for transcriptome-wide detection of RBP-RNA interactions provide insights into how RBPs regulate gene expression programs and how RNA processing is disrupted in disease state. Despite their association with disease and although the importance of regulating gene expression is well appreciated, only a small fraction of the over 2,000 RBPs identified thus far have known RNA targets and molecular roles. Commonly, immunoprecipitation-based technologies coupled to high throughput (Illumina) sequencing, such as RNA immunoprecipitation (RIP) and Crosslinking Immunoprecipitation (CLIP), and ribosome profiling are used to identify RBP targets and binding sites across the transcriptome. However, these experimental protocols are labor-intensive, require large amounts of input material, are not adaptable to high-throughput workflows. To overcome these limitations, we develop a novel technology, reagent resource, experimental protocols and a computational framework, that we collectively term STAMP (Surveying Targets By APOBEC-Mediated Profiling), for detecting RBP-RNA targets and translation at the single-cell and single- molecule level. In preliminary data we demonstrate, for the first time in the field, discovery of RBP-RNA sites and translation states at single-cell resolution. We anticipate that STAMP can be used reliably to identify RNA targets, binding sites and even extract motifs from a few cells to a single cell, thus effectively increasing limits of detection over current methods by several orders of magnitude. Combined with simultaneous RNA-seq analyses, STAMP will enable the combined identification of RBP binding sites and global measurement of gene expression, a long- standing goal for the gene expression, genomics and RNA communities. As a corollary, even without single cell analyses, STAMP can accept ultra-low input material which enables rare cell-types to be collected and analyzed for RBP-interactomes. By applying STAMP to ribosomal proteins, we extend this approach for single-cell detection of ribosome association while simultaneously measuring gene expression. Our conceptual and technological innovations will, for the first time, enable translation efficiency and RBP-interactomes to be measured at single-cell level and at scale, opening up new paradigms of biological questions.
项目摘要 RNA结合蛋白(RBP)从合成到衰变与RNA分子相互作用以控制其代谢, 亚细胞定位、稳定性和翻译。用于RBP-RNA的全转录组检测的方法 相互作用提供了对RBP如何调节基因表达程序以及RNA加工如何 在疾病状态下中断。尽管它们与疾病有关,尽管调控基因的重要性 表达是很好的赞赏,只有一小部分的2,000多个RBP确定迄今为止有已知的RNA 目标和分子作用。通常,基于免疫沉淀的技术结合高通量 (Illumina)测序,如RNA免疫沉淀(RIP)和交联免疫沉淀(CLIP), 和核糖体分析用于鉴定转录组中的RBP靶标和结合位点。然而,在这方面, 这些实验方案是劳动密集型的,需要大量的输入材料,不适于 高通量工作流。为了克服这些限制,我们开发了一种新的技术,试剂资源, 实验协议和计算框架,我们统称为STAMP(测量目标 APOBEC介导的分析),用于检测RBP-RNA靶标和在单细胞和单细胞上的翻译。 分子水平。在初步数据中,我们首次在该领域证明了RBP-RNA位点的发现, 翻译状态在单细胞分辨率。我们预计STAMP可以可靠地用于识别RNA靶标, 结合位点,甚至从几个细胞中提取基序到单个细胞,从而有效地提高检测极限 比目前的方法高出几个数量级。结合同步RNA-seq分析,STAMP 将使RBP结合位点的鉴定和基因表达的整体测量相结合,这是一个长期的- 基因表达,基因组学和RNA社区的长期目标。作为推论,即使没有单个细胞 STAMP可以接受超低输入材料,从而能够收集和分析稀有细胞类型 对于RBP-相互作用体。通过将STAMP应用于核糖体蛋白,我们将这种方法扩展到单细胞 检测核糖体结合,同时测量基因表达。我们的概念和 技术创新将第一次使翻译效率和RBP相互作用成为可能, 在单细胞水平和规模上进行测量,开辟了生物学问题的新范式。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eugene Wei-Ming Yeo其他文献

Eugene Wei-Ming Yeo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eugene Wei-Ming Yeo', 18)}}的其他基金

STAMP technology to enable single-cell and isoform-sensitive detection of RBP sites
STAMP 技术可实现 RBP 位点的单细胞和亚型敏感检测
  • 批准号:
    10475206
  • 财政年份:
    2021
  • 资助金额:
    $ 99.54万
  • 项目类别:
STAMP technology to enable single-cell and isoform-sensitive detection of RBP sites
STAMP 技术可实现 RBP 位点的单细胞和亚型敏感检测
  • 批准号:
    10632150
  • 财政年份:
    2021
  • 资助金额:
    $ 99.54万
  • 项目类别:
Single-Cell Transcriptomic and Epigenetics Core
单细胞转录组学和表观遗传学核心
  • 批准号:
    10214453
  • 财政年份:
    2018
  • 资助金额:
    $ 99.54万
  • 项目类别:
Single-Cell Transcriptomic and Epigenetics Core
单细胞转录组学和表观遗传学核心
  • 批准号:
    10453788
  • 财政年份:
    2018
  • 资助金额:
    $ 99.54万
  • 项目类别:
Collaboration on preclinical autism cellular assays, biosignatures, and network analyses (Copacabana)
临床前自闭症细胞检测、生物特征和网络分析方面的合作(Copacabana)
  • 批准号:
    8935692
  • 财政年份:
    2015
  • 资助金额:
    $ 99.54万
  • 项目类别:
Defining the messenger RNP code in the brain
定义大脑中的信使 RNP 代码
  • 批准号:
    8295914
  • 财政年份:
    2012
  • 资助金额:
    $ 99.54万
  • 项目类别:
Defining the messenger RNP code in the brain
定义大脑中的信使 RNP 代码
  • 批准号:
    8997123
  • 财政年份:
    2012
  • 资助金额:
    $ 99.54万
  • 项目类别:
Defining the messenger RNP code in the brain
定义大脑中的信使 RNP 代码
  • 批准号:
    8605237
  • 财政年份:
    2012
  • 资助金额:
    $ 99.54万
  • 项目类别:
Defining the messenger RNP code in the brain
定义大脑中的信使 RNP 代码
  • 批准号:
    8427273
  • 财政年份:
    2012
  • 资助金额:
    $ 99.54万
  • 项目类别:
Defining the messenger RNP code in the brain
定义大脑中的信使 RNP 代码
  • 批准号:
    8790775
  • 财政年份:
    2012
  • 资助金额:
    $ 99.54万
  • 项目类别:

相似海外基金

Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
  • 批准号:
    BB/Y006380/1
  • 财政年份:
    2024
  • 资助金额:
    $ 99.54万
  • 项目类别:
    Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
  • 批准号:
    24K17112
  • 财政年份:
    2024
  • 资助金额:
    $ 99.54万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
  • 批准号:
    2300890
  • 财政年份:
    2023
  • 资助金额:
    $ 99.54万
  • 项目类别:
    Continuing Grant
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
  • 批准号:
    23K06918
  • 财政年份:
    2023
  • 资助金额:
    $ 99.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
  • 批准号:
    23K05758
  • 财政年份:
    2023
  • 资助金额:
    $ 99.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
  • 批准号:
    23K04668
  • 财政年份:
    2023
  • 资助金额:
    $ 99.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Design and Synthesis of Fluorescent Amino Acids: Novel Tools for Biological Imaging
荧光氨基酸的设计与合成:生物成像的新工具
  • 批准号:
    2888395
  • 财政年份:
    2023
  • 资助金额:
    $ 99.54万
  • 项目类别:
    Studentship
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
  • 批准号:
    10761044
  • 财政年份:
    2023
  • 资助金额:
    $ 99.54万
  • 项目类别:
Lifestyle, branched-chain amino acids, and cardiovascular risk factors: a randomized trial
生活方式、支链氨基酸和心血管危险因素:一项随机试验
  • 批准号:
    10728925
  • 财政年份:
    2023
  • 资助金额:
    $ 99.54万
  • 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
  • 批准号:
    10757309
  • 财政年份:
    2023
  • 资助金额:
    $ 99.54万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了