Machine Learning and Control Principles for Computational Biology

计算生物学的机器学习和控制原理

基本信息

  • 批准号:
    10276879
  • 负责人:
  • 金额:
    $ 44.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Summary/Abstract With our increasing ability to measure biological data at scale and the digitalization of health records, computational thinking is becoming ever more important in the biological science and healthcare. The research directions proposed in this grant look to build robust machine learning models and tool for computational biology by including principles and analysis from other engineering fields, like control, that have a proven record of incorporating robustness into the systems they have automated. This increased robustness will save resources during the development of these machine learning models. It will also lead to more reliable diagnostics, clinical tools, and machine learning based biological discoveries. We have proposed three future research directions at the intersection of machine learning, control, and computational biology (a) modeling dynamical systems, (b) robust optimization schemes (c) control principles for in vivo modeling of microbial communities. The first proposed research area involves the development of flexible models for performing inference on dynamical systems models with time-series data. Dynamical systems models are able to learn mathematically causal relationships between variables, compared to other models whose parameters may only have correlative relationships. Our flexible models will be differentiable allowing them to be trained using the same efficient algorithms and hardware that have propelled deep learning models into the spotlight. These differentiable methods will allow for us to more easily integrate the uncertainty associated with biological measurements into our models. The second research area looks to develop more robust gradient optimization algorithms, the work horse for training deep neural networks. Many of the popular algorithms used to train deep neural networks were not explicitly designed to be robust. By developing more robust optimization techniques machine learning models trained on disparate data sets at different hospital or labs will be more reproducible and will require less time for tuning parameters, ultimately saving resources as well. These robust optimization techniques will also aid in the certification of machine learning based tools that will ultimately be deployed in the clinic. The third research area we propose is an approach for the discovery and design of robust microbial communities. Communities of commensal, or engineered, bacteria have long been proposed as alternative therapies for the treatment of gut related illness (“bugs as drugs”). We propose a top down approach to identifying putative microbial consortia members from time-series experiments with germ free mice colonized by complex flora. By beginning the consortia design process in vivo we hope to overcome the challenge that many other attempts at consortia construction have encountered where in vitro designed communities do not reproduce their intended properties once transferred into living host organisms. The tools from this work will be built using open access software and all data will be made easily accessible and explorable to the public.
摘要/文摘

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Travis Eli Gibson其他文献

Travis Eli Gibson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Travis Eli Gibson', 18)}}的其他基金

Tracking the microbiome: purpose-built machine learning tools for tracking microbial strains over time
跟踪微生物组:专用机器学习工具,用于随时间跟踪微生物菌株
  • 批准号:
    10218776
  • 财政年份:
    2021
  • 资助金额:
    $ 44.75万
  • 项目类别:
Machine Learning and Control Principles for Computational Biology
计算生物学的机器学习和控制原理
  • 批准号:
    10707916
  • 财政年份:
    2021
  • 资助金额:
    $ 44.75万
  • 项目类别:
Tracking the microbiome: purpose-built machine learning tools for tracking microbial strains over time
跟踪微生物组:专用机器学习工具,用于随时间跟踪微生物菌株
  • 批准号:
    10401922
  • 财政年份:
    2021
  • 资助金额:
    $ 44.75万
  • 项目类别:
Machine Learning and Control Principles for Computational Biology
计算生物学的机器学习和控制原理
  • 批准号:
    10474456
  • 财政年份:
    2021
  • 资助金额:
    $ 44.75万
  • 项目类别:

相似海外基金

Development of education and dissemination methods for psychiatric nurses to introduce complementary and alternative therapies from the physical side
开发精神科护士的教育和传播方法,从身体方面引入补充和替代疗法
  • 批准号:
    26463484
  • 财政年份:
    2014
  • 资助金额:
    $ 44.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Alternative therapies for antibiotic-resistant Helicobacter pylori infection
抗生素耐药性幽门螺杆菌感染的替代疗法
  • 批准号:
    23590890
  • 财政年份:
    2011
  • 资助金额:
    $ 44.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Alternative Therapies for Benign Prostate Symptoms
良性前列腺症状的替代疗法
  • 批准号:
    8147503
  • 财政年份:
    2010
  • 资助金额:
    $ 44.75万
  • 项目类别:
Scientific evaluation of therapeutic effects and mechanism of alternative therapies using PET molecular imaging technique.
利用PET分子成像技术科学评估替代疗法的治疗效果和机制。
  • 批准号:
    21590754
  • 财政年份:
    2009
  • 资助金额:
    $ 44.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Treating Burn injuries: First-aid and alternative therapies
治疗烧伤:急救和替代疗法
  • 批准号:
    nhmrc : 409902
  • 财政年份:
    2006
  • 资助金额:
    $ 44.75万
  • 项目类别:
    NHMRC Postgraduate Scholarships
PREVENTING COGNITIVE DECLINE WITH ALTERNATIVE THERAPIES
通过替代疗法预防认知能力下降
  • 批准号:
    7206559
  • 财政年份:
    2005
  • 资助金额:
    $ 44.75万
  • 项目类别:
Alternative Therapies for Alcohol and Drug Abuse
酒精和药物滥用的替代疗法
  • 批准号:
    6861518
  • 财政年份:
    2004
  • 资助金额:
    $ 44.75万
  • 项目类别:
Alternative Therapies for Alcohol and Drug Abuse
酒精和药物滥用的替代疗法
  • 批准号:
    6952268
  • 财政年份:
    2004
  • 资助金额:
    $ 44.75万
  • 项目类别:
Alternative Therapies for Alcohol and Drug Abuse
酒精和药物滥用的替代疗法
  • 批准号:
    7115879
  • 财政年份:
    2004
  • 资助金额:
    $ 44.75万
  • 项目类别:
Alternative Therapies for Alcohol and Drug Abuse
酒精和药物滥用的替代疗法
  • 批准号:
    7237832
  • 财政年份:
    2004
  • 资助金额:
    $ 44.75万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了