Machine Learning and Control Principles for Computational Biology
计算生物学的机器学习和控制原理
基本信息
- 批准号:10707916
- 负责人:
- 金额:$ 44.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsAlternative TherapiesAreaBacteriaBiologicalBiological ModelsBiological SciencesBiologyCertificationClinicClinicalCommunitiesComplexComputational BiologyComputer softwareDataData SetDevelopmentDiagnosticDisparateEngineeringEnsureEquus caballusGerm-FreeGrantHealthcareHospitalsIn VitroMachine LearningMeasurementMeasuresMethodsModelingMusOrganismPharmaceutical PreparationsProcessPropertyReproducibilityResearchResourcesSchemeSeriesSystemTechniquesTimeTrainingUncertaintyWorkcomputational reasoningcomputerized toolsdeep learningdeep learning modeldeep neural networkdesigndigital healthdynamic systemexperimental studyflexibilityhealth recordin vivoin vivo Modelmachine learning modelmathematical learningmembermicrobial communitymicrobiotasuccesstool
项目摘要
Summary/Abstract
With our increasing ability to measure biological data at scale and the digitalization of health records,
computational thinking is becoming ever more important in the biological science and healthcare. The research
directions proposed in this grant look to build robust machine learning models and tool for computational biology
by including principles and analysis from other engineering fields, like control, that have a proven record of
incorporating robustness into the systems they have automated. This increased robustness will save resources
during the development of these machine learning models. It will also lead to more reliable diagnostics, clinical
tools, and machine learning based biological discoveries. We have proposed three future research directions at
the intersection of machine learning, control, and computational biology (a) modeling dynamical systems, (b)
robust optimization schemes (c) control principles for in vivo modeling of microbial communities. The first
proposed research area involves the development of flexible models for performing inference on dynamical
systems models with time-series data. Dynamical systems models are able to learn mathematically causal
relationships between variables, compared to other models whose parameters may only have correlative
relationships. Our flexible models will be differentiable allowing them to be trained using the same efficient
algorithms and hardware that have propelled deep learning models into the spotlight. These differentiable
methods will allow for us to more easily integrate the uncertainty associated with biological measurements into
our models. The second research area looks to develop more robust gradient optimization algorithms, the work
horse for training deep neural networks. Many of the popular algorithms used to train deep neural networks were
not explicitly designed to be robust. By developing more robust optimization techniques machine learning models
trained on disparate data sets at different hospital or labs will be more reproducible and will require less time for
tuning parameters, ultimately saving resources as well. These robust optimization techniques will also aid in the
certification of machine learning based tools that will ultimately be deployed in the clinic. The third research area
we propose is an approach for the discovery and design of robust microbial communities. Communities of
commensal, or engineered, bacteria have long been proposed as alternative therapies for the treatment of gut
related illness (“bugs as drugs”). We propose a top down approach to identifying putative microbial consortia
members from time-series experiments with germ free mice colonized by complex flora. By beginning the
consortia design process in vivo we hope to overcome the challenge that many other attempts at consortia
construction have encountered where in vitro designed communities do not reproduce their intended properties
once transferred into living host organisms. The tools from this work will be built using open access software and
all data will be made easily accessible and explorable to the public.
摘要/摘要
随着我们测量大规模生物数据的能力日益增强,以及健康记录的数字化,
计算思维在生物科学和医疗保健中正变得越来越重要。这项研究
这项拨款建议的方向是为计算生物学建立健壮的机器学习模型和工具
通过包括来自其他工程领域的原理和分析,例如控制,这些领域具有经过验证的
将健壮性融入他们自动化的系统中。这种增强的健壮性将节省资源
在开发这些机器学习模型的过程中。它还将导致更可靠的诊断、临床
工具和基于机器学习的生物发现。我们提出了三个未来的研究方向
机器学习、控制和计算生物学的交集(A)动态系统建模,(B)
稳健的优化方案(C)微生物群落活体建模的控制原则。第一
建议的研究领域包括开发用于对动力学进行推理的灵活模型
使用时间序列数据的系统模型。动力系统模型能够从数学上学习因果关系
变量之间的关系,与参数可能只有相关性的其他模型相比
两性关系。我们灵活的模型将是可区分的,允许它们使用相同的效率进行训练
将深度学习模型推向聚光灯下的算法和硬件。这些是可区分的
方法将使我们能够更容易地将与生物测量相关的不确定性整合到
我们的模特。第二个研究领域寻求开发更稳健的梯度优化算法,这项工作
用于训练深度神经网络的马。许多用于训练深度神经网络的流行算法是
没有明确地设计成健壮的。通过开发更健壮的优化技术,机器学习模型
在不同的医院或实验室对不同的数据集进行培训将更具可重复性,并且所需时间将更少
调整参数,最终也节省了资源。这些强大的优化技术还将有助于
最终将在临床上部署的基于机器学习的工具的认证。第三个研究领域
我们提出了一种发现和设计强健微生物群落的方法。的社区
长期以来,共生菌或工程菌一直被提议作为肠道治疗的替代疗法。
与疾病相关的疾病(“虫子如毒品”)。我们提出了一种自上而下的方法来识别假定的微生物联合体。
来自时间序列实验的成员,无菌小鼠被复杂的菌群定植。通过开始
在联合体设计过程中,我们希望克服许多其他联合体尝试所面临的挑战
在体外设计的群落不能复制其预期属性的建筑中遇到过
一旦转移到活的宿主生物体中。这项工作中的工具将使用开放获取软件和
所有数据都将向公众提供方便的访问和浏览。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Travis Eli Gibson其他文献
Travis Eli Gibson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Travis Eli Gibson', 18)}}的其他基金
Tracking the microbiome: purpose-built machine learning tools for tracking microbial strains over time
跟踪微生物组:专用机器学习工具,用于随时间跟踪微生物菌株
- 批准号:
10218776 - 财政年份:2021
- 资助金额:
$ 44.75万 - 项目类别:
Tracking the microbiome: purpose-built machine learning tools for tracking microbial strains over time
跟踪微生物组:专用机器学习工具,用于随时间跟踪微生物菌株
- 批准号:
10401922 - 财政年份:2021
- 资助金额:
$ 44.75万 - 项目类别:
Machine Learning and Control Principles for Computational Biology
计算生物学的机器学习和控制原理
- 批准号:
10276879 - 财政年份:2021
- 资助金额:
$ 44.75万 - 项目类别:
Machine Learning and Control Principles for Computational Biology
计算生物学的机器学习和控制原理
- 批准号:
10474456 - 财政年份:2021
- 资助金额:
$ 44.75万 - 项目类别:
相似海外基金
Development of education and dissemination methods for psychiatric nurses to introduce complementary and alternative therapies from the physical side
开发精神科护士的教育和传播方法,从身体方面引入补充和替代疗法
- 批准号:
26463484 - 财政年份:2014
- 资助金额:
$ 44.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Alternative therapies for antibiotic-resistant Helicobacter pylori infection
抗生素耐药性幽门螺杆菌感染的替代疗法
- 批准号:
23590890 - 财政年份:2011
- 资助金额:
$ 44.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Alternative Therapies for Benign Prostate Symptoms
良性前列腺症状的替代疗法
- 批准号:
8147503 - 财政年份:2010
- 资助金额:
$ 44.75万 - 项目类别:
Scientific evaluation of therapeutic effects and mechanism of alternative therapies using PET molecular imaging technique.
利用PET分子成像技术科学评估替代疗法的治疗效果和机制。
- 批准号:
21590754 - 财政年份:2009
- 资助金额:
$ 44.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Treating Burn injuries: First-aid and alternative therapies
治疗烧伤:急救和替代疗法
- 批准号:
nhmrc : 409902 - 财政年份:2006
- 资助金额:
$ 44.75万 - 项目类别:
NHMRC Postgraduate Scholarships
PREVENTING COGNITIVE DECLINE WITH ALTERNATIVE THERAPIES
通过替代疗法预防认知能力下降
- 批准号:
7206559 - 财政年份:2005
- 资助金额:
$ 44.75万 - 项目类别:
Alternative Therapies for Alcohol and Drug Abuse
酒精和药物滥用的替代疗法
- 批准号:
6861518 - 财政年份:2004
- 资助金额:
$ 44.75万 - 项目类别:
Alternative Therapies for Alcohol and Drug Abuse
酒精和药物滥用的替代疗法
- 批准号:
6952268 - 财政年份:2004
- 资助金额:
$ 44.75万 - 项目类别:
Alternative Therapies for Alcohol and Drug Abuse
酒精和药物滥用的替代疗法
- 批准号:
7115879 - 财政年份:2004
- 资助金额:
$ 44.75万 - 项目类别:
Alternative Therapies for Alcohol and Drug Abuse
酒精和药物滥用的替代疗法
- 批准号:
7237832 - 财政年份:2004
- 资助金额:
$ 44.75万 - 项目类别: