THE INFORMATICS, DATA ANALYSIS, AND STATISTICS CORE (IDASC)
信息学、数据分析和统计核心 (IDASC)
基本信息
- 批准号:10283066
- 负责人:
- 金额:$ 104.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-30 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AccountingAddressAdultAged, 80 and overAgingAlzheimer&aposs DiseaseAlzheimer&aposs disease related dementiaArchitectureArchivesAreaBehavioralBiologicalBiological FactorsBrainBrain imagingCross-Sectional StudiesDataData AnalysesData CollectionData SetDatabasesDementiaDependenceDetectionDevelopmentDiffusionEnsureExclusionFascicleFeedbackGenerationsGeneticHumanImageInformaticsIngestionLeftLife StyleLongevityMagnetic Resonance ImagingManualsMeasuresMenopauseMethodsModalityModelingMorphologic artifactsMultimodal ImagingOutputProcessProductionProtocols documentationQuality ControlReportingResistanceResolutionRunningScanningServicesSiteSociologySourceSpecimenSpin LabelsStandardizationStatistical Data InterpretationStatistical ModelsStructureSurfaceTimeallostatic loadanalysis pipelinebasebehavior measurementbrain behaviorcentral databasecomputerized data processingconnectomedashboarddata acquisitiondata analysis pipelinedata integritydata pipelinedata qualitydata sharinggray matterhuman diseaseimage archival systemimaging modalitylifestyle factorslongitudinal analysismultimodalitymultiple omicsnovelphenotypic dataresiliencestatisticssuccesstoolwhite matteryoung adult
项目摘要
ABSTRACT FOR IDASC
The Informatics, Data Analysis, and Statistics Core (IDASC) will implement the Human Connectome Project’s
data analysis approach for the Aging Adult Brain Connectome (AABC) Project’s multi-modal imaging data. It will
archive the imaging data as it is collected by the Integrated Data Acquisition Core (IDAC) and provide feedback
to the IDAC on any data quality concerns as a part of its initial quality control. The IDASC will also curate and
manage biological, sociological, and behavioral measures from the Genetics and Multi-omics Specimens Core
(GMSC) and IDAC. The HCP’s brain imaging preprocessing pipelines will be run on the imaging data when it
has been accepted by the database. This includes preprocessing for structural, functional, diffusion, and ASL
MRI data. The IDASC will then perform quality control on these preprocessing results. The IDASC will also
develop cross-sectional and longitudinal data analysis pipelines to generate multi-modal Imaging Data
Phenotypes (IDPs) representing brain architectural/morphometric, functional, and connectivity measures at the
levels of brain areas, functional networks, and white matter tracts. Using these imaging measures together with
the biological, sociological, and behavioral measures collected and generated by the IDAC and GMSC, the
IDASC will assist the 4 sub-projects with generation of optimized longitudinal statistical models to address their
specific hypotheses about interactions between brain, behavior/sociological, and biological factors that
contribute to Alzheimer’s Disease (AD) or other dementias. The IDASC will also share data at the conclusion of
the project.
IDASC摘要
信息学,数据分析和统计核心(IDASC)将实施人类连接组项目的
老龄成人脑连接组(AABC)项目的多模态成像数据的数据分析方法。它将
在集成数据采集核心(IDAC)收集成像数据时将其存档,并提供反馈
作为初始质量控制的一部分,向IDAC提供任何数据质量问题。IDASC还将策划和
管理遗传学和多组学标本核心的生物学、社会学和行为学测量
(GMSC)和IDAC。HCP的脑成像预处理管道将在成像数据上运行,
已被数据库接受。这包括结构、功能、扩散和ASL的预处理
MRI数据。IDASC将对这些预处理结果进行质量控制。IDASC还将
开发横截面和纵向数据分析管道,以生成多模态成像数据
表型(IDP)代表大脑结构/形态测量,功能和连接措施,
大脑区域、功能网络和白色物质束的水平。将这些成像措施与
IDAC和GMSC收集和生成的生物学、社会学和行为学指标,
IDASC将协助4个子项目生成优化的纵向统计模型,以解决其
关于大脑、行为/社会学和生物学因素之间相互作用的具体假设,
导致阿尔茨海默病(AD)或其他痴呆症。IDASC还将在结束时分享数据,
该项目
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Scott Marcus其他文献
Daniel Scott Marcus的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Scott Marcus', 18)}}的其他基金
An Imaging Repository for the Cerebrovascular Disease Knowledge Portal (iCDKP)
脑血管疾病知识门户 (iCDKP) 的影像存储库
- 批准号:
10713160 - 财政年份:2023
- 资助金额:
$ 104.03万 - 项目类别:
Sustaining the Integrative Imaging Informatics for Cancer Research (I3CR) Center
维持癌症研究综合成像信息学 (I3CR) 中心
- 批准号:
10187782 - 财政年份:2021
- 资助金额:
$ 104.03万 - 项目类别:
Sustaining the Integrative Imaging Informatics for Cancer Research (I3CR) Center
维持癌症研究综合成像信息学 (I3CR) 中心
- 批准号:
10608104 - 财政年份:2021
- 资助金额:
$ 104.03万 - 项目类别:
Sustaining the Integrative Imaging Informatics for Cancer Research (I3CR) Center
维持癌症研究综合成像信息学 (I3CR) 中心
- 批准号:
10385856 - 财政年份:2021
- 资助金额:
$ 104.03万 - 项目类别:
THE INFORMATICS, DATA ANALYSIS, AND STATISTICS CORE (IDASC)
信息学、数据分析和统计核心 (IDASC)
- 批准号:
10673897 - 财政年份:2021
- 资助金额:
$ 104.03万 - 项目类别:
A High Performance Research Image Repository (RIR) for the Washington University Center of High Performance Computing (CHPC)
华盛顿大学高性能计算中心 (CHPC) 的高性能研究图像存储库 (RIR)
- 批准号:
10177147 - 财政年份:2021
- 资助金额:
$ 104.03万 - 项目类别:
Development of an Open-Source Preclinical Imaging Informatics Platform for Cancer Research
开发用于癌症研究的开源临床前成像信息学平台
- 批准号:
10474402 - 财政年份:2020
- 资助金额:
$ 104.03万 - 项目类别:
IMAT‐ITCR Collaboration: Preclinical Evaluation of Novel Bisphosphonate PET Probes for Myeloma Bone Disease
IMAT-ITCR 合作:新型双膦酸盐 PET 探针治疗骨髓瘤骨病的临床前评估
- 批准号:
10461632 - 财政年份:2020
- 资助金额:
$ 104.03万 - 项目类别:
Development of an Open-Source Preclinical Imaging Informatics Platform for Cancer Research
开发用于癌症研究的开源临床前成像信息学平台
- 批准号:
10685380 - 财政年份:2020
- 资助金额:
$ 104.03万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 104.03万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 104.03万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 104.03万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 104.03万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 104.03万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 104.03万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 104.03万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 104.03万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 104.03万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 104.03万 - 项目类别:
Research Grant