Deciphering the molecular mechanisms in photoreceptor wiring
破译感光器布线的分子机制
基本信息
- 批准号:10280111
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-30 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdhesivesAxonB-LymphocytesBindingBipolar NeuronBlindnessBrainCNTNAP1 geneCell Adhesion MoleculesClustered Regularly Interspaced Short Palindromic RepeatsComplexConeDataDefectDegenerative DisorderDendritesDevelopmentEctopic ExpressionElectroporationFamilyGoalsKnowledgeLabelLeadLightMediatingMolecularNRCAM geneNeural Cell Adhesion Molecule L1NeuraxisNeuronsPathway interactionsPatientsPatternPhotoreceptorsProcessResearchRetinaRetinal ConeRetinal DiseasesRodSpecific qualifier valueSpecificityStructureSynapsesTechniquesTestingTimeTransgenic MiceVertebrate PhotoreceptorsVisualWorkbasecell typecontactindetectordevelopmental diseaseexperimental studygain of functiongenetic manipulationhorizontal cellin vivonervous system disorderneural circuitneurofascinpostsynapticprotein expressionresponseretinal rodsrhosight restorationsynaptogenesistransmission processvisual information
项目摘要
Project Summary
Proper transmission of visual information relies on photoreceptors forming appropriate synaptic connections
during development. Nearly all retinal diseases that lead to blindness are caused by loss of photoreceptors
connections. Thus, elucidating the molecular mechanisms that mediate proper photoreceptor connectivity may
lead to better therapies to treat patients with retinal diseases. During development, photoreceptors first synapse
selectively to horizontal cells, where the dendrites of horizontal cells synapse to cone photoreceptors and the
axon connects to rod photoreceptors. Cones and rods then synapse to their respective bipolar target. Cones
synapse to cone bipolars and rods to rod bipolars. The molecular mechanisms that guide selective wiring of the
different photoreceptors to their distinct synaptic partners remains poorly understood. Our data shows the L1 cell
adhesion molecule Neurofascin (Nfasc) is localized to the synaptic layer during development and expressed in
rods, horizontal cells, and rod bipolars. Moreover, we find disruption of Nfasc results in rod synaptic defects and
abnormal rod-driven visual responses. As Nfasc is known to mediate adhesive interactions between neurons,
we propose Nfasc is a key molecule mediating selective connectivity of rods to horizontal cells and then to rod
bipolars. In addition, we find other cell adhesion molecules that are known to work alongside Nfasc (i.e. Caspr,
Cntn1, Nrcam), to be expressed in the complementary cone pathway. Thereby, we hypothesize that restricted
expression of cell adhesion molecules mediates selective wiring of the different photoreceptors to their respective
targets. To test our hypothesis, we will mouse transgenics, in vivo genetic manipulations, and single neuron
labeling approaches to identify the key molecular interactions that guide photoreceptors to synapse selectively
to different partners. The proposed research will elucidate the adhesive molecular interactions that instruct
selective wiring of photoreceptors to horizontal cells (Aim 1) and to bipolar neurons (Aim 2). Through these
experiments, we will uncover the molecular mechanisms involved in complex wiring of neural circuits during
development. This knowledge will be necessary to develop new strategies to restore vision in those with retinal
diseases.
项目概要
视觉信息的正确传输依赖于光感受器形成适当的突触连接
在开发过程中。几乎所有导致失明的视网膜疾病都是由光感受器丧失引起的
连接。因此,阐明介导适当光感受器连接的分子机制可能
导致更好的疗法来治疗视网膜疾病患者。在发育过程中,光感受器首先产生突触
选择性地作用于水平细胞,水平细胞的树突与视锥细胞突触,
轴突连接到视杆光感受器。然后视锥细胞和视杆细胞突触到各自的双极目标。视锥细胞
突触到视锥双极和视杆到视杆双极。指导选择性布线的分子机制
不同的光感受器与其不同的突触伙伴之间的关系仍然知之甚少。我们的数据显示 L1 细胞
粘附分子神经成束蛋白(Nfasc)在发育过程中定位于突触层并表达于
视杆细胞、水平细胞和双极视杆细胞。此外,我们发现 Nfasc 的破坏会导致杆突触缺陷和
异常的杆驱动视觉反应。由于 Nfasc 已知可介导神经元之间的粘附相互作用,
我们认为 Nfasc 是介导视杆细胞与水平细胞、然后与视杆细胞选择性连接的关键分子
双相情感障碍者。此外,我们还发现其他已知与 Nfasc 一起发挥作用的细胞粘附分子(即 Caspr、
Cntn1、Nrcam),在互补锥通路中表达。因此,我们假设限制
细胞粘附分子的表达介导不同光感受器与其各自的选择性连接
目标。为了检验我们的假设,我们将小鼠转基因、体内遗传操作和单个神经元
标记方法来识别引导光感受器选择性突触的关键分子相互作用
给不同的伙伴。拟议的研究将阐明指导的粘合剂分子相互作用
光感受器与水平细胞(目标 1)和双极神经元(目标 2)的选择性连接。通过这些
实验中,我们将揭示神经回路复杂接线所涉及的分子机制
发展。这些知识对于制定恢复视网膜患者视力的新策略是必要的。
疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elizabeth Zuniga-Sanchez其他文献
Elizabeth Zuniga-Sanchez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elizabeth Zuniga-Sanchez', 18)}}的其他基金
Deciphering the molecular mechanisms in photoreceptor wiring
破译感光器布线的分子机制
- 批准号:
10617929 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Deciphering the molecular mechanisms in photoreceptor wiring
破译感光器布线的分子机制
- 批准号:
10723128 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Deciphering the molecular mechanisms in photoreceptor wiring
破译感光器布线的分子机制
- 批准号:
10489851 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Deciphering the molecular mechanisms in photoreceptor wiring
破译感光器布线的分子机制
- 批准号:
10654028 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
The regulation of synaptic specificity in the mammalian retina
哺乳动物视网膜突触特异性的调节
- 批准号:
10179396 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
The regulation of synaptic specificity in the mammalian retina
哺乳动物视网膜突触特异性的调节
- 批准号:
10436960 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
The regulation of synaptic specificity in the mammalian retina
哺乳动物视网膜突触特异性的调节
- 批准号:
9370779 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Jagged-Notch and Fgf signaling: patterning the vertebrate upper face
Jagged-Notch 和 Fgf 信号:脊椎动物上表面的图案
- 批准号:
7936846 - 财政年份:2009
- 资助金额:
$ 40万 - 项目类别:
Jagged-Notch and Fgf signaling: patterning the vertebrate upper face
Jagged-Notch 和 Fgf 信号:脊椎动物上表面的图案
- 批准号:
8288026 - 财政年份:2009
- 资助金额:
$ 40万 - 项目类别:
Jagged-Notch and Fgf signaling: patterning the vertebrate upper face
Jagged-Notch 和 Fgf 信号:脊椎动物上表面的图案
- 批准号:
8123362 - 财政年份:2009
- 资助金额:
$ 40万 - 项目类别:
相似海外基金
I-Corps: Translation Potential of Peptidic Ensembles as Novel Bio-adhesives
I-Corps:肽整体作为新型生物粘合剂的转化潜力
- 批准号:
2409620 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Architectural design of active adhesives
活性粘合剂的结构设计
- 批准号:
2403716 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Design of non-swellable adhesives for brain surgery using cyclodextrin inclusion polymer
使用环糊精包合物聚合物脑外科不可溶胀粘合剂的设计
- 批准号:
23H01718 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Meta-material adhesives for improved performance and functionalisation of bondlines
超材料粘合剂可提高粘合层的性能和功能化
- 批准号:
EP/W019450/1 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Fellowship
Light-propelled dental adhesives with enhanced bonding capability
具有增强粘合能力的光驱动牙科粘合剂
- 批准号:
10741660 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
DMREF: Accelerating the Design of Adhesives with Nanoscale Control of Thermomechanical Properties
DMREF:通过热机械性能的纳米级控制加速粘合剂的设计
- 批准号:
2323317 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Mag-Cure: A novel method for magnetically induced bonding and de-bonding of thermoset adhesives in the Automotive Industry
Mag-Cure:汽车行业中热固性粘合剂磁感应粘合和脱粘的新方法
- 批准号:
10062336 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Collaborative R&D
Biodegradable, Biocompatible Pressure Sensitive Adhesives
可生物降解、生物相容性压敏粘合剂
- 批准号:
10677869 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Poly(glycerol carbonate) pressure sensitive adhesives for the in vivo closure of alveolar pleural fistulae
用于体内闭合肺泡胸膜瘘的聚(甘油碳酸酯)压敏粘合剂
- 批准号:
10746743 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Enhanced bio-production of difficult to make peptide ingredients for specialty adhesives and personal care
增强用于特种粘合剂和个人护理品的难以制造的肽成分的生物生产
- 批准号:
10021363 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Investment Accelerator














{{item.name}}会员




