Impact of DNA double-strand breaks on 3D genome organization and genome stability in Alzheimer’s disease
DNA 双链断裂对阿尔茨海默病 3D 基因组组织和基因组稳定性的影响
基本信息
- 批准号:10282373
- 负责人:
- 金额:$ 13.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalATAC-seqAdoptedAdvisory CommitteesAgingAlzheimer&aposs DiseaseAlzheimer&aposs disease brainAlzheimer&aposs disease modelAlzheimer&aposs disease riskAutopsyBiological AssayBiologyBrainCellsChIP-seqChromatinChromosomal translocationCoculture TechniquesComplexDNADNA BindingDNA DamageDNA Double Strand BreakDataDevelopmentDiseaseFrequenciesGene ExpressionGenomeGenome StabilityGenomic InstabilityGenomicsGoalsHi-CHumanHyperactivityImmediate-Early GenesInduced pluripotent stem cell derived neuronsKnockout MiceLabelLeadLocationMeasuresMediatingMentorsMentorshipMicrogliaMissionModelingMolecularMosaicismMusMutationNerve DegenerationNeurodegenerative DisordersNeurogliaNeuronal DysfunctionNeuronsNonhomologous DNA End JoiningOligodendrogliaOrthologous GenePartner in relationshipPathogenesisPathologicPathway interactionsPatternPharmacologyPhasePlayPublic HealthPublishingRecurrenceReportingRoleStructureTauopathiesTechnologyTestingTherapeutic InterventionTrainingWorkaging braincell typechromosome conformation capturecohesincomputational pipelinesexperiencefamilial Alzheimer diseaseimprovedin situ sequencinginduced pluripotent stem cellinduced pluripotent stem cell technologymouse modelnervous system disordernovelnovel therapeuticspresenilin-1preventpromoterresponsesingle cell analysissingle-cell RNA sequencingtherapeutic evaluationtooltranscription factortranscriptome
项目摘要
PROJECT SUMMARY/ABSTRACT
The accumulation of DNA Double-Strand Breaks (DSBs) in neurons is an early hallmark of Alzheimer’s disease
(AD). Increased DSBs are also associated with aging, which is the largest risk factor for AD. AD is also a complex
disease involving all major brain glial cell types. Thus, there is a critical need to understand the molecular
mechanisms of DSB induced changes in both neurons and glia. The structural stability of the genome is
paramount in maintaining a functional genome, and recently, the 3D organization of the genome has emerged
as a major regulator of genome function. My overall hypothesis is that 3D genome reorganization and structural
genome instability mediated by DSBs are principle drivers of AD pathogenesis and brain aging. My objective is
to determine how and to what extent DSBs within the neurons impact genome organization and the glial
response, with the goal of identifying molecular pathways that can be targeted as novel therapies for preventing
or halting the progression of neurodegeneration. I will use mouse models that recapitulate the pre-symptomatic
accumulation of DSBs in neurons and human iPSC models to determine the degree of the 3D genome disruption
caused due to DSBs and the underlying molecular mechanisms. I will also identify the consequences of neuronal
DSBs on the structural stability of the genome by measuring the frequency of DSB mediated chromosomal
translocations in human AD neurons. Interestingly, normal neuronal activity causes DSBs at immediate early
gene promoters. Also, neuronal hyperactivity has been reported in AD. I will test if IEGs are locations of frequent
chromosomal translocations after neuronal hyperactivity induced in neuronal culture.
Previous studies have shown that microglia transitions to a reactive state in response to
neurodegeneration. To understand the role of the 3D genome organization in this microglia transition, I will use
single cell Hi-C to measure the unique chromatin interactions that mediate the reactive microglia state.
Subsequently, transcription factor predictions using integrative analysis of single cell Hi-C will be tested in iPSC
derived microglia-neuron co-cultures for their potential to modulate the reactive microglia response. This
approach will be extended to study oligodendrocyte response in the independent phase.
I will work with my mentor Dr. Li-Huei Tsai, my mentorship committee, Dr. Bruce Yankner and Dr. Manolis
Kellis, my technical support and advisory committee, Dr. Frederick Alt and Dr. Peter Fraser to carry out my
proposed training plan. I will gain experience in iPSC technology and differentiation from the Tsai lab to modulate
the disease associated microglia response to neuronal DSBs and work with Dr. Manolis Kellis to implement the
computational pipelines for the transcription factor predictions. To bridge the gap in my training in the biology of
AD and brain aging, I will audit relevant courses and receive additional mentoring from Dr. Bruce Yankner.
项目摘要/摘要
DNA双链断裂(DSB)在神经元中的积累是阿尔茨海默氏病的早期标志
(广告)。 DSB的增加也与衰老有关,这是AD的最大危险因素。广告也是一个复杂的
疾病涉及所有主要的脑神经胶质细胞类型。那是了解分子的迫切需要
DSB的机制诱导神经元和神经胶质的变化。基因组的结构稳定性是
维持功能基因组以及最近的3D组织中的最重要的是出现了
作为基因组功能的主要调节剂。我的总体假设是3D基因组重组和结构
DSB介导的基因组不稳定性是AD发病机理和大脑衰老的主要驱动因素。我的目标是
确定神经元内的DSB如何以及在何种程度上影响基因组组织和神经胶质
响应,目的是识别可以作为防止新疗法的分子途径
或停止神经退行性的进展。我将使用鼠标模型来概括预症状
DSB在神经元和人IPSC模型中的积累,以确定3D基因组破坏的程度
由DSB和基本分子机制引起的。我还将确定神经元的后果
DSB通过测量DSB介导的染色体的频率来对基因组的结构稳定性
人类AD神经元中的易位。有趣的是,正常的神经元活动会立即引起DSB
基因启动子。此外,AD中已经报道了神经元多动。我将测试IEG是否是频率的位置
神经元多动诱导神经元培养后的染色体易位。
先前的研究表明,小胶质细胞转变为反应性状态
神经变性。要了解3D基因组组织在小胶质细胞过渡中的作用,我将使用
单细胞HI-C测量介导反应性小胶质细胞状态的独特染色质相互作用。
随后,将在IPSC中测试使用单细胞HI-C的集成分析的转录因子预测
衍生的小胶质细胞神经元共培养物,以调节反应性小胶质细胞反应的潜力。这
将扩展方法以研究独立阶段的少突胶质细胞反应。
我将与我的导师Li-Huei Tsai博士,我的导师委员会,Bruce Yankner博士和Manolis博士一起工作
凯利斯(Kellis),我的技术支持和咨询委员会,弗雷德里克·阿特(Frederick Alt)和彼得·弗雷泽(Peter Fraser)博士
拟议的培训计划。我将获得IPSC技术的经验以及与Tsai实验室的差异化以调制
该疾病相关的小胶质细胞对神经元DSB的反应,并与Manolis Kellis博士一起实施
转录因子预测的计算管道。在我的生物学培训中弥合差距
AD和大脑衰老,我将审核相关课程,并获得Bruce Yankner博士的额外指导。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vishnu Dileep其他文献
Vishnu Dileep的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vishnu Dileep', 18)}}的其他基金
Impact of DNA double-strand breaks on 3D genome organization and genome stability in Alzheimer’s disease
DNA 双链断裂对阿尔茨海默病 3D 基因组组织和基因组稳定性的影响
- 批准号:
10463836 - 财政年份:2021
- 资助金额:
$ 13.67万 - 项目类别:
相似国自然基金
面向图神经网络ATAC-seq模体识别的最小间隔单细胞聚类研究
- 批准号:62302218
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于ATAC-seq策略挖掘穿心莲基因组中调控穿心莲内酯合成的增强子
- 批准号:82260745
- 批准年份:2022
- 资助金额:33.00 万元
- 项目类别:地区科学基金项目
基于ATAC-seq策略挖掘穿心莲基因组中调控穿心莲内酯合成的增强子
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于单细胞ATAC-seq技术的C4光合调控分子机制研究
- 批准号:32100438
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
基于单细胞ATAC-seq技术的C4光合调控分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Engineering 3D Osteosarcoma Models to Elucidate Biology and Inform Drug Discovery
工程 3D 骨肉瘤模型以阐明生物学并为药物发现提供信息
- 批准号:
10564801 - 财政年份:2023
- 资助金额:
$ 13.67万 - 项目类别:
Highly scalable and sensitive spatial transcriptomic and epigenomic sequencing of brain tissues from human and non-human primate
对人类和非人类灵长类动物的脑组织进行高度可扩展且灵敏的空间转录组和表观基因组测序
- 批准号:
10370074 - 财政年份:2021
- 资助金额:
$ 13.67万 - 项目类别:
Impact of DNA double-strand breaks on 3D genome organization and genome stability in Alzheimer’s disease
DNA 双链断裂对阿尔茨海默病 3D 基因组组织和基因组稳定性的影响
- 批准号:
10463836 - 财政年份:2021
- 资助金额:
$ 13.67万 - 项目类别: