EAT: A Reliable Eating Assessment Technology for Free-living Individuals.
EAT:针对自由生活个体的可靠饮食评估技术。
基本信息
- 批准号:10280789
- 负责人:
- 金额:$ 70.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AdherenceAgeAgreementAlgorithmsAssessment toolBehaviorBehavioral MedicineBiteBody mass indexCaloriesCartoonsChestChronic DiseaseConsciousControlled EnvironmentCross-Over TrialsCrystalline LensCuesDataDetectionDevicesDietDietary InterventionDietary intakeEarEatingEating BehaviorEnergy IntakeEnsureEquilibriumEtiologyFeelingFemaleFishesFoundationsFutureGesturesHealthHealth PromotionHourHyperphagiaHypertensionImageImpulsivityIncentivesIndividualInterventionKnowledgeLife StyleLocalesMachine LearningManualsMeasurementMeasuresMethodsMonitorNamesNeckObesityOutputParticipantPatient Self-ReportPatternPerformancePrivacyPrivatizationReportingResearchResearch PersonnelRiskSpeedSuggestionSurrogate MarkersSystemTechniquesTechnology AssessmentTestingTimeVideo RecordingVisualWeight GainWorkWristbasecohortdetection platformdietaryemotional eatingexperimental studyfood consumptionhedonichigh riskimprovedinterestminiaturizenovelpersonalized interventionpreservationpreventprototypereal time monitoringresponsesensorsexsmart watchsocialtv watchingwearable devicewillingness
项目摘要
Project Summary/Abstract
Overeating and unhealthy eating are often associated with various health risk conditions such as obesity, high
blood pressure, and some chronic diseases. To get a better understanding of overeating and unhealthy eating,
researchers often rely on self-reports provided by individuals. Suggestions regarding changing lifestyle is often
provided based on observations from these self-reports. However, it is well known that self-reports can be
erroneous and subject to reporting biases. Thus, an objective way to measure the eating activity and validating
self-reports is necessary. Recently, there has been growing interest in moving beyond self-reports and
monitoring the eating activity automatically. To monitor automatically, and in real time, researchers have looked
at using sensor data from wrist worn devices, neck-worn devices, or ear-worn devices to automatically detect
eating. These devices often enable capturing the eating periods. However, these devices seldom capture
images, thus limiting the possibility of visually confirming the consumed food and their quantity.
With the increasing popularity of wearable cameras, it is gradually becoming possible to capture the eating
activities and associated context automatically and without any user intervention. Advances in machine learning
enables automatically extracting eating related information from these captured images. However, wearable
cameras often capture more information than necessary, like capturing bystanders. This unnecessary
information capturing reduces participant's willingness to wearing the camera. Currently, no camera exists that
can capture the eating activity and at the same time limit capturing unnecessary information. Obfuscating the
unnecessary information might increase participant's willingness to wear the camera. However, it is unclear if
and which obfuscation technique will increase participant's willingness to don the wearable camera and at the
same time ensure automatic context determination. In this project, we will determine the possibility of using
machine learning to detect eating in videos and identify the obfuscation technique that can allow detecting the
eating activity without collecting unnecessary information.
To this end, first we will develop an activity detection algorithm that will allow detecting the eating activity using
data from an IR sensor array and RGB images. Next, we will test various obfuscation methods in a cross-over
trial and select the best obfuscation method based on the greatest participant acceptability. We will then deploy
the eating detection algorithm with the best obfuscation approach on a novel wearable camera that has an
infrared sensor array. We will use this camera to test the possibility of detecting eating in a real-world setting. To
validate our algorithm, we will ask people to confirm or refute predicted eating and non-eating moments. We will
compare the performance of this algorithm against both real-time user response and 24-hour dietary recall to
objectively evaluate the algorithm's performance. Our proposed system will improve current research practices
of evaluating dietary intake and pave the way for personalized interventions for behavioral medicine.
项目摘要/摘要
暴饮暴食和不健康的饮食往往与各种健康风险状况有关,如肥胖、高
血压,以及一些慢性病。为了更好地理解暴饮暴食和不健康饮食,
研究人员经常依赖个人提供的自我报告。关于改变生活方式的建议通常是
根据这些自我报告的观察结果提供的资料。然而,众所周知,自我报告可以是
错误的,容易受到报道偏见的影响。因此,客观地测量进食活动和验证
自我报告是必要的。最近,人们越来越有兴趣超越自我报告和
自动监控进食活动。为了自动、实时地监测,研究人员已经观察到
在使用来自手腕佩戴设备、脖子佩戴设备或耳朵佩戴设备的传感器数据来自动检测
吃东西。这些设备通常能够捕捉进食时间。然而,这些设备很少捕获
图像,从而限制了从视觉上确认所消费的食物及其数量的可能性。
随着可穿戴式相机的日益普及,捕捉进食正在逐渐成为可能
活动和相关联的上下文自动进行,无需任何用户干预。机器学习的研究进展
能够从这些捕获的图像中自动提取与饮食相关的信息。然而,可穿戴设备
摄像机通常会捕捉到更多不必要的信息,比如捕捉旁观者。这是不必要的
信息捕捉降低了参与者佩戴相机的意愿。目前,不存在任何摄像机
可以捕捉饮食活动,同时限制捕捉不必要的信息。混淆了
不必要的信息可能会增加参与者佩戴相机的意愿。然而,目前还不清楚是否
哪种模糊技术会增加参与者佩戴可穿戴相机的意愿,并在
同时确保自动确定上下文。在这个项目中,我们将确定使用
机器学习来检测视频中的饮食并识别模糊技术,该技术可以允许检测
在不收集不必要信息的情况下进行饮食活动。
为此,首先我们将开发一种活动检测算法,该算法将允许使用
来自红外传感器阵列和RGB图像的数据。接下来,我们将在交叉测试中测试各种混淆方法
根据参与者的最大可接受性,试验并选择最佳的混淆方法。然后我们将部署
在一种新型可穿戴式摄像头上采用最佳混淆方法的进食检测算法
红外传感器阵列。我们将使用这个摄像头来测试在现实世界中检测进食的可能性。至
验证我们的算法,我们将要求人们确认或驳斥预测的进食和不进食时刻。我们会
将该算法的性能与实时用户响应和24小时饮食召回进行比较
客观评价算法的性能。我们建议的系统将改进当前的研究实践
评估饮食摄入量,为行为医学的个性化干预铺平道路。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nabil Alshurafa其他文献
Nabil Alshurafa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nabil Alshurafa', 18)}}的其他基金
EAT: A Reliable Eating Assessment Technology for Free-living Individuals.
EAT:针对自由生活个体的可靠饮食评估技术。
- 批准号:
10457404 - 财政年份:2021
- 资助金额:
$ 70.17万 - 项目类别:
EAT: A Reliable Eating Assessment Technology for Free-living Individuals.
EAT:针对自由生活个体的可靠饮食评估技术。
- 批准号:
10663089 - 财政年份:2021
- 资助金额:
$ 70.17万 - 项目类别:
BehaviorSight: Privacy enhancing wearable system to detect health risk behaviors in real-time.
BehaviourSight:增强隐私的可穿戴系统,可实时检测健康风险行为。
- 批准号:
10043674 - 财政年份:2020
- 资助金额:
$ 70.17万 - 项目类别:
SenseWhy: Overeating in Obesity Through the Lens of Passive Sensing.
SenseWhy:从被动感知的角度看肥胖症的暴饮暴食。
- 批准号:
10406434 - 财政年份:2018
- 资助金额:
$ 70.17万 - 项目类别:
SenseWhy: Overeating in Obesity Through the Lens of Passive Sensing
SenseWhy:通过被动传感的视角观察肥胖症的暴饮暴食
- 批准号:
10063429 - 财政年份:2018
- 资助金额:
$ 70.17万 - 项目类别:
SenseWhy: Overeating in Obesity Through the Lens of Passive Sensing
SenseWhy:通过被动传感的视角观察肥胖症的暴饮暴食
- 批准号:
10310490 - 财政年份:2018
- 资助金额:
$ 70.17万 - 项目类别:
相似国自然基金
靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
- 批准号:JCZRQN202500010
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
- 批准号:2025JJ70209
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
- 批准号:2023JJ50274
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
补肾健脾祛瘀方调控AGE/RAGE信号通路在再生障碍性贫血骨髓间充质干细胞功能受损的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
- 批准号:81973577
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
- 批准号:81602908
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
- 批准号:81501928
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341426 - 财政年份:2024
- 资助金额:
$ 70.17万 - 项目类别:
Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341424 - 财政年份:2024
- 资助金额:
$ 70.17万 - 项目类别:
Continuing Grant
PROTEMO: Emotional Dynamics Of Protective Policies In An Age Of Insecurity
PROTEMO:不安全时代保护政策的情绪动态
- 批准号:
10108433 - 财政年份:2024
- 资助金额:
$ 70.17万 - 项目类别:
EU-Funded
The role of dietary and blood proteins in the prevention and development of major age-related diseases
膳食和血液蛋白在预防和发展主要与年龄相关的疾病中的作用
- 批准号:
MR/X032809/1 - 财政年份:2024
- 资助金额:
$ 70.17万 - 项目类别:
Fellowship
Atomic Anxiety in the New Nuclear Age: How Can Arms Control and Disarmament Reduce the Risk of Nuclear War?
新核时代的原子焦虑:军控与裁军如何降低核战争风险?
- 批准号:
MR/X034690/1 - 财政年份:2024
- 资助金额:
$ 70.17万 - 项目类别:
Fellowship
Walkability and health-related quality of life in Age-Friendly Cities (AFCs) across Japan and the Asia-Pacific
日本和亚太地区老年友好城市 (AFC) 的步行适宜性和与健康相关的生活质量
- 批准号:
24K13490 - 财政年份:2024
- 资助金额:
$ 70.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Discovering the (R)Evolution of EurAsian Steppe Metallurgy: Social and environmental impact of the Bronze Age steppes metal-driven economy
发现欧亚草原冶金的(R)演变:青铜时代草原金属驱动型经济的社会和环境影响
- 批准号:
EP/Z00022X/1 - 财政年份:2024
- 资助金额:
$ 70.17万 - 项目类别:
Research Grant
ICF: Neutrophils and cellular senescence: A vicious circle promoting age-related disease.
ICF:中性粒细胞和细胞衰老:促进与年龄相关疾病的恶性循环。
- 批准号:
MR/Y003365/1 - 财政年份:2024
- 资助金额:
$ 70.17万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Effects of age of acquisition in emerging sign languages
博士论文研究:新兴手语习得年龄的影响
- 批准号:
2335955 - 财政年份:2024
- 资助金额:
$ 70.17万 - 项目类别:
Standard Grant
Shaping Competition in the Digital Age (SCiDA) - Principles, tools and institutions of digital regulation in the UK, Germany and the EU
塑造数字时代的竞争 (SCiDA) - 英国、德国和欧盟的数字监管原则、工具和机构
- 批准号:
AH/Y007549/1 - 财政年份:2024
- 资助金额:
$ 70.17万 - 项目类别:
Research Grant