EAT: A Reliable Eating Assessment Technology for Free-living Individuals.
EAT:针对自由生活个体的可靠饮食评估技术。
基本信息
- 批准号:10457404
- 负责人:
- 金额:$ 68.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AdherenceAgeAgreementAlgorithmsAssessment toolBehaviorBehavioral MedicineBiteBody mass indexCaloriesCartoonsChestChronic DiseaseConsciousControlled EnvironmentCross-Over TrialsCrystalline LensCuesDataDetectionDevicesDietDietary InterventionDietary intakeEarEatingEating BehaviorEnergy IntakeEnsureEquilibriumEtiologyFeelingFemaleFishesFoundationsFutureGesturesHealthHealth PromotionHourHyperphagiaHypertensionImageImpulsivityIncentivesIndividualInterventionKnowledgeLife StyleLocalesMachine LearningManualsMeasurementMeasuresMethodsMonitorNamesNeckObesityOutputParticipantPatient Self-ReportPatternPerformancePersonsPrivacyPrivatizationReportingResearchResearch PersonnelRiskSpeedSuggestionSurrogate MarkersSystemTechniquesTechnology AssessmentTestingTimeVideo RecordingVisualWeight GainWorkWristbasecohortdetection platformdietaryemotional eatingexperimental studyfood consumptionhedonichigh riskimprovedinterestminiaturized devicenovelpersonalized interventionpreservationpreventprototypereal time monitoringresponsesensorsexsmart watchsocialsocial influencetv watchingwearable devicewillingness
项目摘要
Project Summary/Abstract
Overeating and unhealthy eating are often associated with various health risk conditions such as obesity, high
blood pressure, and some chronic diseases. To get a better understanding of overeating and unhealthy eating,
researchers often rely on self-reports provided by individuals. Suggestions regarding changing lifestyle is often
provided based on observations from these self-reports. However, it is well known that self-reports can be
erroneous and subject to reporting biases. Thus, an objective way to measure the eating activity and validating
self-reports is necessary. Recently, there has been growing interest in moving beyond self-reports and
monitoring the eating activity automatically. To monitor automatically, and in real time, researchers have looked
at using sensor data from wrist worn devices, neck-worn devices, or ear-worn devices to automatically detect
eating. These devices often enable capturing the eating periods. However, these devices seldom capture
images, thus limiting the possibility of visually confirming the consumed food and their quantity.
With the increasing popularity of wearable cameras, it is gradually becoming possible to capture the eating
activities and associated context automatically and without any user intervention. Advances in machine learning
enables automatically extracting eating related information from these captured images. However, wearable
cameras often capture more information than necessary, like capturing bystanders. This unnecessary
information capturing reduces participant's willingness to wearing the camera. Currently, no camera exists that
can capture the eating activity and at the same time limit capturing unnecessary information. Obfuscating the
unnecessary information might increase participant's willingness to wear the camera. However, it is unclear if
and which obfuscation technique will increase participant's willingness to don the wearable camera and at the
same time ensure automatic context determination. In this project, we will determine the possibility of using
machine learning to detect eating in videos and identify the obfuscation technique that can allow detecting the
eating activity without collecting unnecessary information.
To this end, first we will develop an activity detection algorithm that will allow detecting the eating activity using
data from an IR sensor array and RGB images. Next, we will test various obfuscation methods in a cross-over
trial and select the best obfuscation method based on the greatest participant acceptability. We will then deploy
the eating detection algorithm with the best obfuscation approach on a novel wearable camera that has an
infrared sensor array. We will use this camera to test the possibility of detecting eating in a real-world setting. To
validate our algorithm, we will ask people to confirm or refute predicted eating and non-eating moments. We will
compare the performance of this algorithm against both real-time user response and 24-hour dietary recall to
objectively evaluate the algorithm's performance. Our proposed system will improve current research practices
of evaluating dietary intake and pave the way for personalized interventions for behavioral medicine.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nabil Alshurafa其他文献
Nabil Alshurafa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nabil Alshurafa', 18)}}的其他基金
EAT: A Reliable Eating Assessment Technology for Free-living Individuals.
EAT:针对自由生活个体的可靠饮食评估技术。
- 批准号:
10663089 - 财政年份:2021
- 资助金额:
$ 68.31万 - 项目类别:
EAT: A Reliable Eating Assessment Technology for Free-living Individuals.
EAT:针对自由生活个体的可靠饮食评估技术。
- 批准号:
10280789 - 财政年份:2021
- 资助金额:
$ 68.31万 - 项目类别:
BehaviorSight: Privacy enhancing wearable system to detect health risk behaviors in real-time.
BehaviourSight:增强隐私的可穿戴系统,可实时检测健康风险行为。
- 批准号:
10043674 - 财政年份:2020
- 资助金额:
$ 68.31万 - 项目类别:
SenseWhy: Overeating in Obesity Through the Lens of Passive Sensing.
SenseWhy:从被动感知的角度看肥胖症的暴饮暴食。
- 批准号:
10406434 - 财政年份:2018
- 资助金额:
$ 68.31万 - 项目类别:
SenseWhy: Overeating in Obesity Through the Lens of Passive Sensing
SenseWhy:通过被动传感的视角观察肥胖症的暴饮暴食
- 批准号:
10063429 - 财政年份:2018
- 资助金额:
$ 68.31万 - 项目类别:
SenseWhy: Overeating in Obesity Through the Lens of Passive Sensing
SenseWhy:通过被动传感的视角观察肥胖症的暴饮暴食
- 批准号:
10310490 - 财政年份:2018
- 资助金额:
$ 68.31万 - 项目类别:
相似国自然基金
靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
- 批准号:JCZRQN202500010
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
- 批准号:2025JJ70209
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
- 批准号:2023JJ50274
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
补肾健脾祛瘀方调控AGE/RAGE信号通路在再生障碍性贫血骨髓间充质干细胞功能受损的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
- 批准号:81973577
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
- 批准号:81602908
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
- 批准号:81501928
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
PROTEMO: Emotional Dynamics Of Protective Policies In An Age Of Insecurity
PROTEMO:不安全时代保护政策的情绪动态
- 批准号:
10108433 - 财政年份:2024
- 资助金额:
$ 68.31万 - 项目类别:
EU-Funded
The role of dietary and blood proteins in the prevention and development of major age-related diseases
膳食和血液蛋白在预防和发展主要与年龄相关的疾病中的作用
- 批准号:
MR/X032809/1 - 财政年份:2024
- 资助金额:
$ 68.31万 - 项目类别:
Fellowship
Atomic Anxiety in the New Nuclear Age: How Can Arms Control and Disarmament Reduce the Risk of Nuclear War?
新核时代的原子焦虑:军控与裁军如何降低核战争风险?
- 批准号:
MR/X034690/1 - 财政年份:2024
- 资助金额:
$ 68.31万 - 项目类别:
Fellowship
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341426 - 财政年份:2024
- 资助金额:
$ 68.31万 - 项目类别:
Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341424 - 财政年份:2024
- 资助金额:
$ 68.31万 - 项目类别:
Continuing Grant
Doctoral Dissertation Research: Effects of age of acquisition in emerging sign languages
博士论文研究:新兴手语习得年龄的影响
- 批准号:
2335955 - 财政年份:2024
- 资助金额:
$ 68.31万 - 项目类别:
Standard Grant
The economics of (mis)information in the age of social media
社交媒体时代(错误)信息的经济学
- 批准号:
DP240103257 - 财政年份:2024
- 资助金额:
$ 68.31万 - 项目类别:
Discovery Projects
How age & sex impact the transcriptional control of mammalian muscle growth
你多大
- 批准号:
DP240100408 - 财政年份:2024
- 资助金额:
$ 68.31万 - 项目类别:
Discovery Projects
Supporting teachers and teaching in the age of Artificial Intelligence
支持人工智能时代的教师和教学
- 批准号:
DP240100111 - 财政年份:2024
- 资助金额:
$ 68.31万 - 项目类别:
Discovery Projects
Enhancing Wahkohtowin (Kinship beyond the immediate family) Community-based models of care to reach and support Indigenous and racialized women of reproductive age and pregnant women in Canada for the prevention of congenital syphilis
加强 Wahkohtowin(直系亲属以外的亲属关系)以社区为基础的护理模式,以接触和支持加拿大的土著和种族育龄妇女以及孕妇,预防先天梅毒
- 批准号:
502786 - 财政年份:2024
- 资助金额:
$ 68.31万 - 项目类别:
Directed Grant














{{item.name}}会员




