EAT: A Reliable Eating Assessment Technology for Free-living Individuals.

EAT:针对自由生活个体的可靠饮食评估技术。

基本信息

  • 批准号:
    10457404
  • 负责人:
  • 金额:
    $ 68.31万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Project Summary/Abstract Overeating and unhealthy eating are often associated with various health risk conditions such as obesity, high blood pressure, and some chronic diseases. To get a better understanding of overeating and unhealthy eating, researchers often rely on self-reports provided by individuals. Suggestions regarding changing lifestyle is often provided based on observations from these self-reports. However, it is well known that self-reports can be erroneous and subject to reporting biases. Thus, an objective way to measure the eating activity and validating self-reports is necessary. Recently, there has been growing interest in moving beyond self-reports and monitoring the eating activity automatically. To monitor automatically, and in real time, researchers have looked at using sensor data from wrist worn devices, neck-worn devices, or ear-worn devices to automatically detect eating. These devices often enable capturing the eating periods. However, these devices seldom capture images, thus limiting the possibility of visually confirming the consumed food and their quantity. With the increasing popularity of wearable cameras, it is gradually becoming possible to capture the eating activities and associated context automatically and without any user intervention. Advances in machine learning enables automatically extracting eating related information from these captured images. However, wearable cameras often capture more information than necessary, like capturing bystanders. This unnecessary information capturing reduces participant's willingness to wearing the camera. Currently, no camera exists that can capture the eating activity and at the same time limit capturing unnecessary information. Obfuscating the unnecessary information might increase participant's willingness to wear the camera. However, it is unclear if and which obfuscation technique will increase participant's willingness to don the wearable camera and at the same time ensure automatic context determination. In this project, we will determine the possibility of using machine learning to detect eating in videos and identify the obfuscation technique that can allow detecting the eating activity without collecting unnecessary information. To this end, first we will develop an activity detection algorithm that will allow detecting the eating activity using data from an IR sensor array and RGB images. Next, we will test various obfuscation methods in a cross-over trial and select the best obfuscation method based on the greatest participant acceptability. We will then deploy the eating detection algorithm with the best obfuscation approach on a novel wearable camera that has an infrared sensor array. We will use this camera to test the possibility of detecting eating in a real-world setting. To validate our algorithm, we will ask people to confirm or refute predicted eating and non-eating moments. We will compare the performance of this algorithm against both real-time user response and 24-hour dietary recall to objectively evaluate the algorithm's performance. Our proposed system will improve current research practices of evaluating dietary intake and pave the way for personalized interventions for behavioral medicine.
项目总结/摘要 暴饮暴食和不健康的饮食往往与各种健康风险状况有关,如肥胖、高血糖、肥胖症、肥胖症和肥胖症。 高血压和一些慢性疾病。为了更好地了解暴饮暴食和不健康饮食, 研究人员经常依赖个人提供的自我报告。关于改变生活方式的建议往往是 根据这些自我报告的观察结果提供。然而,众所周知,自我报告可以 错误的,并受到报告偏见。因此,一个客观的方法来衡量饮食活动和验证 自我报告是必要的。最近,人们越来越有兴趣超越自我报告, 自动监测进食活动。为了自动监测,并在真实的时间,研究人员已经看到 使用来自手腕佩戴设备、颈部佩戴设备或耳朵佩戴设备的传感器数据来自动检测 吃这些设备通常能够捕获进食时间段。然而,这些设备很少捕获 图像,从而限制了视觉上确认所消耗的食物及其数量的可能性。 随着可穿戴相机的日益普及,捕捉吃相也逐渐成为可能 活动和关联的上下文自动地并且无需任何用户干预。机器学习的进步 能够从这些捕获的图像中自动提取与进食相关的信息。然而,可穿戴 摄像机经常捕获比必要的更多的信息,例如捕获旁观者。这种不必要 信息捕获降低了参与者佩戴相机的意愿。目前,没有相机存在, 可以捕捉进食活动,同时限制捕捉不必要的信息。混淆 不必要的信息可能会增加参与者佩戴相机的意愿。然而,目前尚不清楚, 以及哪种模糊技术将增加参与者佩戴可穿戴相机的意愿, 同时确保自动上下文确定。在这个项目中,我们将确定使用 机器学习来检测视频中的进食,并识别可以允许检测 不收集不必要的信息。 为此,首先,我们将开发一种活动检测算法,该算法将允许使用 来自IR传感器阵列的数据和RGB图像。接下来,我们将在交叉测试中测试各种混淆方法 试验并根据最大的参与者可接受性选择最佳混淆方法。然后我们将部署 在一种新型的可穿戴相机上使用最佳模糊方法的进食检测算法, 红外传感器阵列我们将使用这台相机来测试在现实世界中检测进食的可能性。到 为了验证我们的算法,我们将要求人们确认或反驳预测的进食和非进食时刻。我们将 比较该算法对实时用户响应和24小时饮食回忆的性能, 客观地评价算法的性能。我们提出的系统将改善目前的研究实践 评估饮食摄入量,并为行为医学的个性化干预铺平道路。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nabil Alshurafa其他文献

Nabil Alshurafa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nabil Alshurafa', 18)}}的其他基金

EAT: A Reliable Eating Assessment Technology for Free-living Individuals.
EAT:针对自由生活个体的可靠饮食评估技术。
  • 批准号:
    10663089
  • 财政年份:
    2021
  • 资助金额:
    $ 68.31万
  • 项目类别:
EAT: A Reliable Eating Assessment Technology for Free-living Individuals.
EAT:针对自由生活个体的可靠饮食评估技术。
  • 批准号:
    10280789
  • 财政年份:
    2021
  • 资助金额:
    $ 68.31万
  • 项目类别:
BehaviorSight: Privacy enhancing wearable system to detect health risk behaviors in real-time.
BehaviourSight:增强隐私的可穿戴系统,可实时检测健康风险行为。
  • 批准号:
    10043674
  • 财政年份:
    2020
  • 资助金额:
    $ 68.31万
  • 项目类别:
SenseWhy: Overeating in Obesity Through the Lens of Passive Sensing.
SenseWhy:从被动感知的角度看肥胖症的暴饮暴食。
  • 批准号:
    10406434
  • 财政年份:
    2018
  • 资助金额:
    $ 68.31万
  • 项目类别:
SenseWhy: Overeating in Obesity Through the Lens of Passive Sensing
SenseWhy:通过被动传感的视角观察肥胖症的暴饮暴食
  • 批准号:
    10063429
  • 财政年份:
    2018
  • 资助金额:
    $ 68.31万
  • 项目类别:
SenseWhy: Overeating in Obesity Through the Lens of Passive Sensing
SenseWhy:通过被动传感的视角观察肥胖症的暴饮暴食
  • 批准号:
    10310490
  • 财政年份:
    2018
  • 资助金额:
    $ 68.31万
  • 项目类别:

相似国自然基金

靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
  • 批准号:
    JCZRQN202500010
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
  • 批准号:
    2025JJ70209
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0 万元
  • 项目类别:
    面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
  • 批准号:
    2023JJ50274
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
  • 批准号:
    81973577
  • 批准年份:
    2019
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
  • 批准号:
    81602908
  • 批准年份:
    2016
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
  • 批准号:
    81501928
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

PROTEMO: Emotional Dynamics Of Protective Policies In An Age Of Insecurity
PROTEMO:不安全时代保护政​​策的情绪动态
  • 批准号:
    10108433
  • 财政年份:
    2024
  • 资助金额:
    $ 68.31万
  • 项目类别:
    EU-Funded
The role of dietary and blood proteins in the prevention and development of major age-related diseases
膳食和血液蛋白在预防和发展主要与年龄相关的疾病中的作用
  • 批准号:
    MR/X032809/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.31万
  • 项目类别:
    Fellowship
Atomic Anxiety in the New Nuclear Age: How Can Arms Control and Disarmament Reduce the Risk of Nuclear War?
新核时代的原子焦虑:军控与裁军如何降低核战争风险?
  • 批准号:
    MR/X034690/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.31万
  • 项目类别:
    Fellowship
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
  • 批准号:
    2341426
  • 财政年份:
    2024
  • 资助金额:
    $ 68.31万
  • 项目类别:
    Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
  • 批准号:
    2341424
  • 财政年份:
    2024
  • 资助金额:
    $ 68.31万
  • 项目类别:
    Continuing Grant
Doctoral Dissertation Research: Effects of age of acquisition in emerging sign languages
博士论文研究:新兴手语习得年龄的影响
  • 批准号:
    2335955
  • 财政年份:
    2024
  • 资助金额:
    $ 68.31万
  • 项目类别:
    Standard Grant
The economics of (mis)information in the age of social media
社交媒体时代(错误)信息的经济学
  • 批准号:
    DP240103257
  • 财政年份:
    2024
  • 资助金额:
    $ 68.31万
  • 项目类别:
    Discovery Projects
How age & sex impact the transcriptional control of mammalian muscle growth
你多大
  • 批准号:
    DP240100408
  • 财政年份:
    2024
  • 资助金额:
    $ 68.31万
  • 项目类别:
    Discovery Projects
Supporting teachers and teaching in the age of Artificial Intelligence
支持人工智能时代的教师和教学
  • 批准号:
    DP240100111
  • 财政年份:
    2024
  • 资助金额:
    $ 68.31万
  • 项目类别:
    Discovery Projects
Enhancing Wahkohtowin (Kinship beyond the immediate family) Community-based models of care to reach and support Indigenous and racialized women of reproductive age and pregnant women in Canada for the prevention of congenital syphilis
加强 Wahkohtowin(直系亲属以外的亲属关系)以社区为基础的护理模式,以接触和支持加拿大的土著和种族育龄妇女以及孕妇,预防先天梅毒
  • 批准号:
    502786
  • 财政年份:
    2024
  • 资助金额:
    $ 68.31万
  • 项目类别:
    Directed Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了