Provider and Patient-generated Remote Oro-Dental Health Electronic Data Capture for Algorithmic Longitudinal Evaluation and Risk-Assessment (PROHEALER)

提供者和患者生成的远程口腔牙科健康电子数据采集,用于算法纵向评估和风险评估 (PROHEALER)

基本信息

项目摘要

PROJECT SUMMARY/ABSTRACT Research. Oral cavity and oropharyngeal (OC/OPC) cancers afflict more than 53,000 individuals in the United States annually. Despite advancements in oncologic therapies, the majority of patients will experience significant toxicity burden during and after therapy, including moderate-severe xerostomia, dysphagia, reduced mouth opening (i.e. trismus), periodontal disease, and osteoradionecrosis. Remote electronic symptom monitoring through standardized assessment tools for patient reported outcomes (ePROs) is an evidence-based best practice, particularly in the COVID-19 era, yet few clinical practices have demonstrated sustainability of implementation efforts. To date, acute and chronic orodental complications afflicting OC/OPC survivors are largely managed on empirical knowledge with wide inter-provider management variability based on provider experience and available clinical information which is often incomplete, incorrect, or nonexistent. Therefore, standardization of electronic data capture of PROs and objective measures of provider-assessed orodental toxicity severity remains an unmet public health need. Our central hypothesis is that synchronous optimization of machine-readable patient- and provider-generated data collection can be achieved through prioritization of effective implementation strategies for longitudinal oro-systemic ePRO data collection (Aim 1) and creation of novel dental standards for accurate orodental toxicity reporting in both electronic health and dental records (Aim 2). As a subcomponent to Aim 2, we will also design and pilot a novel radiation odontogram to enhance treatment communication between providers. Accurate risk predictions of high-morbidity high-prevalence post-therapy orodental sequelae using high-quality electronic data from Aims 1 and 2 will be incorporated into a statistically robust machine-learning based model (Aim 3). In summary, the PROHEALER proposal fosters innovative and novel informatics approaches for data-driven risk assessment and algorithmic prevention and management of treatment-related oral health diseases afflicting OC/OPC survivors. Career Development & Training. Dr. Moreno's overarching goal is to become an internationally recognized independent research investigator with domain expertise in advanced radiation therapy techniques, clinical informatics and rigorous toxicity modeling methodologies as they pertain to improving patient quality of life and promoting precision prevention and risk-based interventions for orodental complications. This proposal presents Dr. Moreno's 5-year mentored career development plan which includes mentorship from prominent Established NIH Investigators who have committed to overseeing the progress of the proposed projects and Dr. Moreno's overall professional development. The outlined training activities build upon Dr. Moreno's clinical expertise as a Head and Neck Cancer Radiation Oncologist and her prior work in EHR utility enhancement with the inclusion of a comprehensive didactic and project-based curriculum focused on domain knowledge expansion in dental informatics, implementation science, and advanced statistical methods in risk prediction modeling.
项目总结/摘要 Research.口腔和口咽(OC/OPC)癌症在美国折磨着超过53,000人 国家每年。尽管肿瘤治疗取得了进展,但大多数患者将经历显著的 治疗期间和治疗后的毒性负担,包括中度-重度口干、吞咽困难、口缩小 开口(即牙关紧闭)、牙周病和放射性骨坏死。远程电子症状监测 通过患者报告结局(ePRO)的标准化评估工具, 实践,特别是在COVID-19时代,但很少有临床实践证明了 执行工作。到目前为止,影响OC/OPC幸存者的急性和慢性口腔并发症是 主要根据经验知识进行管理,提供商之间的管理差异很大, 经验和可用的临床信息,往往是不完整的,不正确的,或不存在。因此,我们建议, PRO电子数据采集标准化与口腔评估客观化 毒性严重性仍然是未满足的公共卫生需求。我们的中心假设是同步优化 机器可读的患者和提供者生成的数据收集可以通过优先级排序来实现 纵向口腔系统ePRO数据收集(目标1)和创建 在电子健康和牙科记录中准确报告口腔毒性的新牙科标准(Aim 2)的情况。作为目标2的一个子组成部分,我们还将设计和试验一种新的放射性牙科照片,以加强治疗 供应商之间的沟通。治疗后高发病率高患病率的准确风险预测 使用来自目标1和2的高质量电子数据的口腔后遗症将被纳入统计学分析。 基于机器学习的鲁棒模型(目标3)。总之,PROHEALER提案促进创新和 用于数据驱动的风险评估和算法预防和管理的新信息学方法 治疗相关的口腔健康疾病困扰OC/OPC幸存者。 职业发展和培训。莫雷诺博士的首要目标是成为国际公认的 独立研究调查员,具有先进放射治疗技术、临床 信息学和严格的毒性建模方法,因为它们与改善患者生活质量有关, 促进口腔并发症的精确预防和基于风险的干预。该提案提出 博士Moreno的5年职业发展计划,其中包括来自知名企业的指导 致力于监督拟议项目进展的NIH调查人员和莫雷诺博士的研究人员。 全面专业发展。概述的培训活动建立在Moreno博士的临床专业知识基础上, 头颈部癌症放射肿瘤学家和她以前在EHR效用增强方面的工作, 一个全面的教学和项目为基础的课程,重点是领域知识的扩展,在牙科 信息学、实施科学和风险预测建模中的高级统计方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amy Catherine Moreno其他文献

3117 Knowledge-based autoplanning improves efficiency and plan quality for larynx stereotactic radiotherapy
基于知识的自动计划提高了喉立体定向放射治疗的效率和计划质量
  • DOI:
    10.1016/s0167-8140(25)01497-5
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    5.300
  • 作者:
    Yao Zhao;Dong Joo Rhee;Congjun Wang;Tucker Netherton;Sara Lynn Thrower;Kelli McSpadden;Xin Wang;Anna Lee;Amy Catherine Moreno;David Rosenthal;Jack Phan;He Wang
  • 通讯作者:
    He Wang

Amy Catherine Moreno的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amy Catherine Moreno', 18)}}的其他基金

Provider and Patient-generated Remote Oro-Dental Health Electronic Data Capture for Algorithmic Longitudinal Evaluation and Risk-Assessment (PROHEALER)
提供者和患者生成的远程口腔牙科健康电子数据采集,用于算法纵向评估和风险评估 (PROHEALER)
  • 批准号:
    10449579
  • 财政年份:
    2022
  • 资助金额:
    $ 15.95万
  • 项目类别:
Diversity Supplement: Radiation-specific Automated Dental Dose Distributions via Machine-learning based Mapping for Accurate Predictions of (Peri)odontal Problems (RADMAP)
多样性补充:通过基于机器学习的映射实现特定辐射的自动牙科剂量分布,以准确预测(牙周)牙周问题 (RADMAP)
  • 批准号:
    10602003
  • 财政年份:
    2022
  • 资助金额:
    $ 15.95万
  • 项目类别:
Radiation-specific Automated Dental Dose Distributions via Machine-learning based Mapping for Accurate Predictions of (Peri)odontal Problems (RADMAP)
通过基于机器学习的映射实现特定辐射的自动牙科剂量分布,以准确预测牙周问题 (RADMAP)
  • 批准号:
    10285226
  • 财政年份:
    2021
  • 资助金额:
    $ 15.95万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 15.95万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15.95万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 15.95万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15.95万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 15.95万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 15.95万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15.95万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 15.95万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 15.95万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15.95万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了