Robotically-actuated, low-noise, concurrent TMS-EEG-fMRI system
机器人驱动、低噪声、并发 TMS-EEG-fMRI 系统
基本信息
- 批准号:10286708
- 负责人:
- 金额:$ 199.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:Acoustic StimulationAddressAlgorithmsAnatomyAuditoryBluetoothBrainBrain MappingBrain imagingClinicalCommunicationComputer softwareCustomDataDevelopmentDiseaseEffectivenessElectrodesElectroencephalographyElectromagneticsElectronicsEvaluationFeedbackFoundationsFunctional Magnetic Resonance ImagingFundingHeadHealthHumanImageLeadMagnetic Resonance ImagingMeasuresMethodsMorphologic artifactsNatureNeurosciencesNeurosciences ResearchNoiseOperating SystemPatternPerformancePersonsPhasePositioning AttributeResearchResearch PersonnelResolutionRobotRoboticsSafetySignal TransductionSpeedSynapsesSystemSystems IntegrationTechniquesTechnologyTherapeutic InterventionThinnessTimeTranscranial magnetic stimulationUnited States National Institutes of HealthWireless TechnologyWorkauditory pathwaybaseblood oxygen level dependentdesignexperienceflexibilityflexible electronicsfunctional magnetic resonance imaging/electroencephalographyimaging systemimprovedin vivoindustry partnermagnetic fieldminiaturizemultimodalityneural circuitneuroregulationnew technologynoveloperationrelating to nervous systemresponserobotic systemsoundspatiotemporaltemporal measurementtool
项目摘要
Abstract
The ability to noninvasively modulate and image the brain with spatial and temporal precision is highly desirable
for understanding brain circuits in health and disease. Transcranial magnetic stimulation (TMS) is a method for
stimulating the superficial cortex with high spatial and temporal precision, and its effects can be aimed at deeper
targets by leveraging the trans-synaptic connectivity of brain circuits. Functional magnetic resonance imaging
(fMRI) has high spatial resolution but limited temporal precision, and the opposite holds for
electroencephalography (EEG). These three noninvasive electromagnetic methods have recently been
combined to achieve high spatial and temporal precision of concurrent modulation and imaging of the brain. This
approach, however, has various significant technical limitations, including mutual electromagnetic artifacts
decreasing the signal-to-noise ratio and delaying the acquisition of imaging/EEG data, TMS acoustic noise co-
activating auditory pathways, and the inability to adaptively adjust the TMS coil position within the MRI scanner
for optimal targeting. The overarching objective of this project is to address these limitations by developing and
integrating an array of novel technologies. We will develop a compact, energy efficient, quiet, as well as MRI-
and EEG-compatible TMS coil. The TMS coil will be actuated with a custom MRI-compatible robotic system,
allowing adaptive optimization of the coil position and orientation based on imaging feedback. The neural circuit
responses to the stimulation will be imaged with a newly developed a flexible, head-conforming array of MRI
coils combining local magnetic field shimming and RF receiving to achieve high signal-to-noise ratio and fast
image acquisition. The brain activity will be simultaneously recorded both before and after TMS with high
temporal resolution and low noise using a novel wireless EEG system. To meet the technical challenges of
creating such as a system operating inside MRI scanners, our team has developed several breakthrough
technologies that will work synergistically to reduce or eliminate couplings between system components and
enhance the stimulation precision and imaging speed and sensitivity. Once developed, the robotically-actuated
TMS-EEG-fMRI system will enable systematic interrogation of human brain circuits inside an MRI scanner with
spatial and temporal flexibility and precision that are impossible to achieve with current technology. The
integrated system will be easy-to-use, and platform-agonistic thus having the potential for immediate and
scalable impact. First-time adaptive optimization of the TMS coil placement in the MRI scanner will be
demonstrated for brain-state-triggered engagement of a deep brain target. In summary, the proposed robotically-
actuated TMS-EEG-fMRI system will enable modulation and imaging of brain circuits with enhanced anatomical
and functional precision that can lead to advances in neuroscience research and therapeutic interventions.
摘要
具有空间和时间精度的非侵入性调制和成像大脑的能力是非常期望的
来了解健康和疾病中的大脑回路。经颅磁刺激(TMS)是一种用于治疗
以高的空间和时间精度刺激表层皮层,其效果可以针对更深的
通过利用大脑回路的跨突触连接来实现目标。功能磁共振成像
功能磁共振成像(fMRI)具有高的空间分辨率,但有限的时间精度,相反,
脑电图(EEG)。这三种非侵入性电磁方法最近被
以实现脑的同时调制和成像的高空间和时间精度。这
然而,该方法具有各种显著的技术限制,包括相互电磁伪影
降低信噪比并延迟成像/EEG数据的采集,TMS声噪声协同
激活听觉通路,以及无法自适应调整MRI扫描仪内的TMS线圈位置
以达到最佳目标该项目的总体目标是通过开发和
整合了一系列新技术。我们将开发一种紧凑,节能,安静,以及磁共振成像-
和脑电图兼容的TMS线圈TMS线圈将由定制的MRI兼容机器人系统驱动,
允许基于成像反馈自适应地优化线圈位置和取向。神经回路
对刺激的反应将用一种新开发的灵活的、符合头部的MRI阵列进行成像。
结合局部磁场匀场和RF接收的线圈,以实现高信噪比和快速
图像采集脑活动将在TMS前后同时记录,
时间分辨率和低噪声使用一种新的无线脑电图系统。为了应对技术挑战,
我们的团队已经开发了几个突破性的技术,
协同工作的技术,以减少或消除系统组件之间的耦合,
提高了刺激精度和成像速度及灵敏度。一旦开发出来,
TMS-EEG-fMRI系统将能够在MRI扫描仪内系统地询问人脑电路,
这是目前技术无法实现的。的
集成系统将易于使用,平台竞争,从而具有立即和
可扩展的影响。首次自适应优化TMS线圈在MRI扫描仪中的放置,
证明了大脑状态触发的深层大脑目标的参与。总之,提出的机器人-
驱动的TMS-EEG-fMRI系统将使调制和成像的大脑回路与增强的解剖
和功能的精确性,可以导致神经科学研究和治疗干预的进步。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHUNLEI LIU其他文献
CHUNLEI LIU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHUNLEI LIU', 18)}}的其他基金
Genetically-Encoded, Non-Invasive and Wireless Modulation of Calcium Dynamics in Astrocytes With Spatiotemporal Precision and Depth
具有时空精度和深度的星形胶质细胞钙动态的基因编码、非侵入性无线调节
- 批准号:
10562265 - 财政年份:2023
- 资助金额:
$ 199.82万 - 项目类别:
Robotically-actuated, low-noise, concurrent TMS-EEG-fMRI system
机器人驱动、低噪声、并发 TMS-EEG-fMRI 系统
- 批准号:
10435560 - 财政年份:2021
- 资助金额:
$ 199.82万 - 项目类别:
Robotically-actuated, low-noise, concurrent TMS-EEG-fMRI system
机器人驱动、低噪声、并发 TMS-EEG-fMRI 系统
- 批准号:
10614611 - 财政年份:2021
- 资助金额:
$ 199.82万 - 项目类别:
Interrogating Biophysical Mechanisms of Magnetogenetic Cell Stimulation at Radio Frequencies
探究射频刺激磁发生细胞的生物物理机制
- 批准号:
10132415 - 财政年份:2019
- 资助金额:
$ 199.82万 - 项目类别:
Interrogating Biophysical Mechanisms of Magnetogenetic Cell Stimulation at Radio Frequencies
探究射频刺激磁发生细胞的生物物理机制
- 批准号:
10368059 - 财政年份:2019
- 资助金额:
$ 199.82万 - 项目类别:
Interrogating Biophysical Mechanisms of Magnetogenetic Cell Stimulation at Radio Frequencies
探究射频刺激磁发生细胞的生物物理机制
- 批准号:
10596467 - 财政年份:2019
- 资助金额:
$ 199.82万 - 项目类别:
High-resolution in vivo and non-invasive imaging of myocardial fibers
心肌纤维的高分辨率体内和非侵入性成像
- 批准号:
8843034 - 财政年份:2014
- 资助金额:
$ 199.82万 - 项目类别:
High-resolution in vivo and non-invasive imaging of myocardial fibers
心肌纤维的高分辨率体内和非侵入性成像
- 批准号:
8678299 - 财政年份:2014
- 资助金额:
$ 199.82万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 199.82万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 199.82万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 199.82万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 199.82万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 199.82万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 199.82万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 199.82万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 199.82万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 199.82万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 199.82万 - 项目类别:
Research Grant