Interrogating Biophysical Mechanisms of Magnetogenetic Cell Stimulation at Radio Frequencies
探究射频刺激磁发生细胞的生物物理机制
基本信息
- 批准号:10596467
- 负责人:
- 金额:$ 51.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:Animal ModelAreaBRAIN initiativeBindingBiophysical ProcessBiophysicsBrainCalciumCationsCell LineCell membraneCellsCellular Metabolic ProcessCentral Nervous SystemCharacteristicsChemicalsChimeric ProteinsComplexConflict (Psychology)DNADependenceElectric StimulationElectromagnetic FieldsElectromagneticsEnergy TransferFamilyFerritinFrequenciesFutureGoalsHeatingHigh temperature of physical objectIn SituIn VitroIon ChannelIronKininogensLawsLipid PeroxidationLipidsMagnetic nanoparticlesMagnetismMeasuresMembraneMethodsModelingNatureNeurobiologyNeuronsOperative Surgical ProceduresPenetrationPermeabilityPhysicsPhysiologicalProcessProteinsProtocols documentationReportingResearchSafetySignal PathwaySpecific qualifier valueSpecificityStimulusSystemTRPV channelTRPV1 geneTechniquesTechnologyTemperatureThermodynamicsTissuesVanilloidcell typedesignexperimental studyimprovedin vivomagnetic fieldmechanical forceneural stimulationnoveloptogeneticsparticleperoxidationradio frequencyreceptorresponseuptakevoltagewireless
项目摘要
Abstract
Magnetogenetics is a recently proposed method for stimulating cells using electromagnetic fields. In one
approach, radio-frequency (RF) electromagnetic fields are applied to stimulate membrane channel proteins such
as TRPV1 and TRPV4 that are attached to ferritins. The concept is highly attractive as it enables wireless neural
stimulation without limitation on penetration depth or the requirement of invasive surgeries. If successful, RF-
based magnetogenetics can provide a non-invasive approach for large-scale neural stimulation that can reach
anywhere in the brain and achieve cellular specificity. This capability overcomes a significant limitation in other
techniques such as electrical stimulation and optogenetics where stimulation is spatially restricted. However,
while there have been several independent reports of experimental evidences for magnetogenetic effects using
RF waves, the physical and neurobiological underpinnings of such effects remain unclear and controversial.
Reported experiments have been conducted only in a few selected frequencies and amplitudes and the
responses were mostly measured indirectly based on downstream physiological effects. The objective of the
proposed project is to systematically characterize, model and validate the neurobiological and cellular responses
upon RF stimulation in neurons expressing ferritin-attached TRPV1 and TRPV4 channels. Specifically, we aim
to characterize these magnetogenetic channels of their: 1) neuronal responses to electrical and chemical stimuli
and to RF stimulation over a wide range of frequencies and amplitudes; 2) temperature responses to RF
stimulation at the protein, cytoplasmic membrane and cellular level; 3) cellular metabolic processes upon RF
stimulation. We will systematically evaluate two novel working hypotheses of the underlying mechanisms. If
successful, the project will characterize the cellular responses to RF stimulation, quantify activation thresholds
and safety limits, establish standard protocols and elucidate the biophysical underpinnings of this reported RF-
based magnetogenetic phenomenon. It would resolve a fundamental challenge in advancing this technology and
guide a more rationale design and improvement of the techniques. Understanding the mechanisms of the initial
reports of magnetogenetics would be a significant addition to the present ensemble of neuro-stimulation
technologies such as electrical stimulation and optogenetics and contribute to one central goal of the BRAIN
Initiative that is to develop new and improved perturbation technologies suitable for controlling specified cell
types and circuits to modulate function in the central nervous system.
摘要
磁遗传学是最近提出的使用电磁场刺激细胞的方法。在一个
在一种方法中,施加射频(RF)电磁场以刺激膜通道蛋白,
TRPV 1和TRPV 4与铁蛋白结合。这个概念非常有吸引力,因为它使无线神经网络
刺激,而不限制穿透深度或侵入性手术的要求。如果成功,RF-
基于磁遗传学的方法可以为大规模神经刺激提供一种非侵入性方法,
在大脑的任何地方,并实现细胞特异性。这种能力克服了在其它实施例中的显著限制。
例如电刺激和光遗传学技术,其中刺激在空间上受到限制。然而,在这方面,
虽然已经有几个独立的报告,实验证据的磁效应,使用
射频波,这种影响的物理和神经生物学基础仍然不清楚和有争议。
报道的实验仅在少数选定的频率和振幅下进行,
响应大多是基于下游生理效应间接测量的。的目的
拟议的项目是系统地表征,建模和验证神经生物学和细胞反应
在表达铁蛋白连接的TRPV 1和TRPV 4通道的神经元中的RF刺激后。具体来说,我们的目标是
以表征这些磁通道的:1)神经元对电刺激和化学刺激的反应
以及在宽范围的频率和振幅上的RF刺激; 2)对RF的温度响应
蛋白质、细胞质膜和细胞水平的刺激; 3)RF后的细胞代谢过程
刺激.我们将系统地评估潜在机制的两个新的工作假设。如果
成功后,该项目将表征细胞对射频刺激的反应,量化激活阈值,
和安全限度,建立标准协议,并阐明生物物理基础,这一报告的RF-
基于磁致现象。它将解决推进这项技术的一个根本挑战,
指导更合理的设计和技术改进。了解初始的机制
磁遗传学的报告将是对目前神经刺激整体的重要补充,
技术,如电刺激和光遗传学,并有助于大脑的一个中心目标
该倡议旨在开发适用于控制特定细胞的新的和改进的扰动技术
调节中枢神经系统功能的类型和回路。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Timing of Excitatory and Inhibitory Synapses Rules the Cerebellar Computation.
兴奋性和抑制性突触的时序决定小脑计算。
- DOI:10.1523/jneurosci.1946-23.2024
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Morales-Weil,Koyam
- 通讯作者:Morales-Weil,Koyam
Evaluating methods and protocols of ferritin-based magnetogenetics.
- DOI:10.1016/j.isci.2021.103094
- 发表时间:2021-10-22
- 期刊:
- 影响因子:5.8
- 作者:Hernández-Morales M;Han V;Kramer RH;Liu C
- 通讯作者:Liu C
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHUNLEI LIU其他文献
CHUNLEI LIU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHUNLEI LIU', 18)}}的其他基金
Genetically-Encoded, Non-Invasive and Wireless Modulation of Calcium Dynamics in Astrocytes With Spatiotemporal Precision and Depth
具有时空精度和深度的星形胶质细胞钙动态的基因编码、非侵入性无线调节
- 批准号:
10562265 - 财政年份:2023
- 资助金额:
$ 51.03万 - 项目类别:
Robotically-actuated, low-noise, concurrent TMS-EEG-fMRI system
机器人驱动、低噪声、并发 TMS-EEG-fMRI 系统
- 批准号:
10286708 - 财政年份:2021
- 资助金额:
$ 51.03万 - 项目类别:
Robotically-actuated, low-noise, concurrent TMS-EEG-fMRI system
机器人驱动、低噪声、并发 TMS-EEG-fMRI 系统
- 批准号:
10435560 - 财政年份:2021
- 资助金额:
$ 51.03万 - 项目类别:
Robotically-actuated, low-noise, concurrent TMS-EEG-fMRI system
机器人驱动、低噪声、并发 TMS-EEG-fMRI 系统
- 批准号:
10614611 - 财政年份:2021
- 资助金额:
$ 51.03万 - 项目类别:
Interrogating Biophysical Mechanisms of Magnetogenetic Cell Stimulation at Radio Frequencies
探究射频刺激磁发生细胞的生物物理机制
- 批准号:
10132415 - 财政年份:2019
- 资助金额:
$ 51.03万 - 项目类别:
Interrogating Biophysical Mechanisms of Magnetogenetic Cell Stimulation at Radio Frequencies
探究射频刺激磁发生细胞的生物物理机制
- 批准号:
10368059 - 财政年份:2019
- 资助金额:
$ 51.03万 - 项目类别:
High-resolution in vivo and non-invasive imaging of myocardial fibers
心肌纤维的高分辨率体内和非侵入性成像
- 批准号:
8843034 - 财政年份:2014
- 资助金额:
$ 51.03万 - 项目类别:
High-resolution in vivo and non-invasive imaging of myocardial fibers
心肌纤维的高分辨率体内和非侵入性成像
- 批准号:
8678299 - 财政年份:2014
- 资助金额:
$ 51.03万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
- 批准号:
2322614 - 财政年份:2024
- 资助金额:
$ 51.03万 - 项目类别:
Standard Grant
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
- 批准号:
ES/Z50290X/1 - 财政年份:2024
- 资助金额:
$ 51.03万 - 项目类别:
Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
- 批准号:
NE/Y003365/1 - 财政年份:2024
- 资助金额:
$ 51.03万 - 项目类别:
Research Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
- 批准号:
534092360 - 财政年份:2024
- 资助金额:
$ 51.03万 - 项目类别:
Major Research Instrumentation
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 51.03万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 51.03万 - 项目类别:
Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
- 批准号:
24K20765 - 财政年份:2024
- 资助金额:
$ 51.03万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 51.03万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: OPP-PRF: Tracking Long-Term Changes in Lake Area across the Arctic
博士后奖学金:OPP-PRF:追踪北极地区湖泊面积的长期变化
- 批准号:
2317873 - 财政年份:2024
- 资助金额:
$ 51.03万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 51.03万 - 项目类别:
Standard Grant