DATA-DRIVEN MODELS TO PREDICT DELAYED CEREBRAL ISCHEMIA AFTER SUBARACHNOID HEMORRHAGE
数据驱动模型预测蛛网膜下腔出血后迟发性脑缺血
基本信息
- 批准号:10288178
- 负责人:
- 金额:$ 25.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAngiographyBiological MarkersBlindedBlood VesselsBlood flowBrain hemorrhageBrain regionCaringCerebral AneurysmCerebral IschemiaCerebrumCessation of lifeCharacteristicsClinicalClinical DataCognitiveDataDevelopmentDiagnosisDiagnosticDiagnostic ProcedureDiseaseEventGoalsHemorrhageHeterogeneityHomeostasisHospitalizationImageImpaired cognitionImpairmentInfarctionIntracranial AneurysmInvestigationLinkMachine LearningMapsMethodsModelingMonitorMorbidity - disease rateOutcomeOutcome MeasurePatient riskPatient-Focused OutcomesPatientsPerfusionPopulationPredictive AnalyticsProbabilityProphylactic treatmentProtocols documentationResearchResource AllocationResourcesRiskRuptureRuptured AneurysmSourceSpasmSpecificityStandardizationStructureSubarachnoid HemorrhageTestingThinnessTimeTissuesVasospasmWorkcerebrovascularexperiencefunctional outcomeshemodynamicsimaging biomarkerimproved outcomeindexingmortalityneurovascularnon-invasive imagingparametric imagingpredictive modelingprospectivequantitative imagingtooltreatment planning
项目摘要
Intracranial Aneurysm (IA) are characterized by a localized dilation and thinning of the
blood vessel, and although they only affect 6% of the population, bleeding from them accounts
for about 25% of cerebrovascular deaths. Rupture of intracranial aneurysms (IAs) causes one of
the most lethal types of hemorrhagic stroke, subarachnoid hemorrhage-SAH. Despite
improvements in SAH management, mortality and morbidity rates remain high, largely due to
delayed ischemic complications. Although symptomatic in up to 40%, because of its severe
consequences and because we cannot identify who will develop spasm, all patients are subject
to extensive monitoring protocols, entailing enormous resources and additional risk for
monitoring and treatment.
This proposal seeks to develop predictive analytics, integrating quantitative angiography,
non-invasive imaging, and clinical data, to improve outcomes for patients suffering
subarachnoid hemorrhage by providing real time patient-specific guidance. Our central
hypothesis is that angiographic parametric imaging (API) hemodynamic biomarkers correlate
with vasospasm and impaired cerebral autoregulation, both of which are associated with poor
outcomes in delayed cerebral ischemia (DCI). API provides a set of maps of image-biomarkers
that may be combined with patient-specific clinical information to robustly predict poor outcomes
due to DCI. The proposal’s objective is to develop, standardize, and validate a diagnostic
pipeline that uses image-based biomarkers and patient characteristics to predict patient-specific
risk of developing DCI, as well as functional and cognitive outcomes.
Our application is significant since there is currently no reliable way to predict DCI early
in a patient’s course, and reliable predictions could help to guide therapy and resource
allocation. To achieve this, we propose two aims. In the first aim, we will expand on prior work
using a machine learning framework to predict which patients are at lowest risk of developing
DCI. In aim two we will develop tools to extend predictions to functional and cognitive
outcomes. If successful, this will be one of the first machine learning applications to produce an
integrated prediction tool that allows clinicians to modify treatment plans in real time to reduce
patient risk and resource utilization.
颅内动脉瘤 (IA) 的特点是局部扩张和变薄
血管,虽然它们只影响 6% 的人口,但它们造成的出血
约25%的脑血管死亡。颅内动脉瘤 (IA) 破裂会导致以下原因之一
出血性中风中最致命的类型是蛛网膜下腔出血-SAH。尽管
尽管 SAH 管理有所改善,但死亡率和发病率仍然很高,这主要是由于
迟发性缺血性并发症。尽管高达 40% 的人有症状,但由于其严重
后果,并且由于我们无法确定谁会出现痉挛,因此所有患者都会受到影响
广泛的监测协议,需要大量的资源和额外的风险
监测和治疗。
该提案旨在开发预测分析,整合定量血管造影,
非侵入性成像和临床数据,以改善患者的治疗结果
通过提供针对患者的实时指导来治疗蛛网膜下腔出血。我们的中央
假设血管造影参数成像 (API) 血流动力学生物标志物与
伴有血管痉挛和大脑自动调节受损,这两者都与较差的
迟发性脑缺血(DCI)的结果。 API 提供了一组图像生物标记图谱
可以与患者特定的临床信息相结合,以稳健地预测不良结果
由于DCI。该提案的目标是开发、标准化和验证诊断
使用基于图像的生物标志物和患者特征来预测患者特异性的管道
发生 DCI 的风险以及功能和认知结果。
我们的应用意义重大,因为目前还没有可靠的方法来早期预测 DCI
在患者的病程中,可靠的预测可以帮助指导治疗和资源
分配。为了实现这一目标,我们提出两个目标。在第一个目标中,我们将扩展之前的工作
使用机器学习框架来预测哪些患者的患病风险最低
DCI。在目标二中,我们将开发工具将预测扩展到功能和认知领域
结果。如果成功,这将是第一个产生
集成的预测工具,允许临床医生实时修改治疗计划,以减少
患者风险和资源利用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason Davies其他文献
Jason Davies的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason Davies', 18)}}的其他基金
DATA-DRIVEN MODELS TO PREDICT DELAYED CEREBRAL ISCHEMIA AFTER SUBARACHNOID HEMORRHAGE
数据驱动模型预测蛛网膜下腔出血后迟发性脑缺血
- 批准号:
10472612 - 财政年份:2021
- 资助金额:
$ 25.16万 - 项目类别:
相似海外基金
ImproviNg rEnal outcomes following coronary angiograPhy and/or percuTaneoUs coroNary intErventions: a pragmatic, adaptive, patient-oriented randomized controlled trial
改善冠状动脉造影和/或经皮冠状动脉介入治疗后的肾脏结局:一项务实、适应性、以患者为导向的随机对照试验
- 批准号:
478732 - 财政年份:2023
- 资助金额:
$ 25.16万 - 项目类别:
Operating Grants
SBIR Phase II: Novel size-changing, gadolinium-free contrast agent for magnetic resonance angiography
SBIR II 期:用于磁共振血管造影的新型尺寸变化、无钆造影剂
- 批准号:
2322379 - 财政年份:2023
- 资助金额:
$ 25.16万 - 项目类别:
Cooperative Agreement
Neonatal Optical Coherence Tomography Angiography to Assess the Effects of Postnatal Exposures on Retinal Development and Predict Neurodevelopmental Outcomes
新生儿光学相干断层扫描血管造影评估产后暴露对视网膜发育的影响并预测神经发育结果
- 批准号:
10588086 - 财政年份:2023
- 资助金额:
$ 25.16万 - 项目类别:
Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
- 批准号:
10602275 - 财政年份:2023
- 资助金额:
$ 25.16万 - 项目类别:
Highly Accelerated Magnetic Resonance Angiography using Deep Learning
使用深度学习的高加速磁共振血管造影
- 批准号:
2886357 - 财政年份:2023
- 资助金额:
$ 25.16万 - 项目类别:
Studentship
Development of a method to simultaneously obtain cerebral blood flow information and progression of cerebral white matter lesions using head MR angiography.
开发一种使用头部磁共振血管造影同时获取脑血流信息和脑白质病变进展的方法。
- 批准号:
23K14839 - 财政年份:2023
- 资助金额:
$ 25.16万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of a new diagnostic method for coronary artery disease using automated image analysis with postmortem coronary angiography CT
使用死后冠状动脉造影 CT 自动图像分析开发冠状动脉疾病的新诊断方法
- 批准号:
23K19795 - 财政年份:2023
- 资助金额:
$ 25.16万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Novel ultrahigh speed swept source OCT angiography methods in diabetic retinopathy
糖尿病视网膜病变的新型超高速扫源 OCT 血管造影方法
- 批准号:
10656644 - 财政年份:2023
- 资助金额:
$ 25.16万 - 项目类别:
Automated Machine Learning-Based Brain Artery Segmentation, Anatomical Prior Labeling, and Feature Extraction on MR Angiography
基于自动机器学习的脑动脉分割、解剖先验标记和 MR 血管造影特征提取
- 批准号:
10759721 - 财政年份:2023
- 资助金额:
$ 25.16万 - 项目类别:
SCH: A physics-informed machine learning approach to dynamic blood flow analysis from static subtraction computed tomographic angiography imaging
SCH:一种基于物理的机器学习方法,用于从静态减影计算机断层血管造影成像中进行动态血流分析
- 批准号:
2205265 - 财政年份:2022
- 资助金额:
$ 25.16万 - 项目类别:
Standard Grant