DATA-DRIVEN MODELS TO PREDICT DELAYED CEREBRAL ISCHEMIA AFTER SUBARACHNOID HEMORRHAGE

数据驱动模型预测蛛网膜下腔出血后迟发性脑缺血

基本信息

  • 批准号:
    10472612
  • 负责人:
  • 金额:
    $ 19.69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Intracranial Aneurysm (IA) are characterized by a localized dilation and thinning of the blood vessel, and although they only affect 6% of the population, bleeding from them accounts for about 25% of cerebrovascular deaths. Rupture of intracranial aneurysms (IAs) causes one of the most lethal types of hemorrhagic stroke, subarachnoid hemorrhage-SAH. Despite improvements in SAH management, mortality and morbidity rates remain high, largely due to delayed ischemic complications. Although symptomatic in up to 40%, because of its severe consequences and because we cannot identify who will develop spasm, all patients are subject to extensive monitoring protocols, entailing enormous resources and additional risk for monitoring and treatment. This proposal seeks to develop predictive analytics, integrating quantitative angiography, non-invasive imaging, and clinical data, to improve outcomes for patients suffering subarachnoid hemorrhage by providing real time patient-specific guidance. Our central hypothesis is that angiographic parametric imaging (API) hemodynamic biomarkers correlate with vasospasm and impaired cerebral autoregulation, both of which are associated with poor outcomes in delayed cerebral ischemia (DCI). API provides a set of maps of image-biomarkers that may be combined with patient-specific clinical information to robustly predict poor outcomes due to DCI. The proposal’s objective is to develop, standardize, and validate a diagnostic pipeline that uses image-based biomarkers and patient characteristics to predict patient-specific risk of developing DCI, as well as functional and cognitive outcomes. Our application is significant since there is currently no reliable way to predict DCI early in a patient’s course, and reliable predictions could help to guide therapy and resource allocation. To achieve this, we propose two aims. In the first aim, we will expand on prior work using a machine learning framework to predict which patients are at lowest risk of developing DCI. In aim two we will develop tools to extend predictions to functional and cognitive outcomes. If successful, this will be one of the first machine learning applications to produce an integrated prediction tool that allows clinicians to modify treatment plans in real time to reduce patient risk and resource utilization.
颅内动脉瘤(IA)的特点是局部扩张和变薄

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jason Davies其他文献

Jason Davies的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jason Davies', 18)}}的其他基金

DATA-DRIVEN MODELS TO PREDICT DELAYED CEREBRAL ISCHEMIA AFTER SUBARACHNOID HEMORRHAGE
数据驱动模型预测蛛网膜下腔出血后迟发性脑缺血
  • 批准号:
    10288178
  • 财政年份:
    2021
  • 资助金额:
    $ 19.69万
  • 项目类别:

相似海外基金

ImproviNg rEnal outcomes following coronary angiograPhy and/or percuTaneoUs coroNary intErventions: a pragmatic, adaptive, patient-oriented randomized controlled trial
改善冠状动脉造影和/或经皮冠状动脉介入治疗后的肾脏结局:一项务实、适应性、以患者为导向的随机对照试验
  • 批准号:
    478732
  • 财政年份:
    2023
  • 资助金额:
    $ 19.69万
  • 项目类别:
    Operating Grants
SBIR Phase II: Novel size-changing, gadolinium-free contrast agent for magnetic resonance angiography
SBIR II 期:用于磁共振血管造影的新型尺寸变化、无钆造影剂
  • 批准号:
    2322379
  • 财政年份:
    2023
  • 资助金额:
    $ 19.69万
  • 项目类别:
    Cooperative Agreement
Neonatal Optical Coherence Tomography Angiography to Assess the Effects of Postnatal Exposures on Retinal Development and Predict Neurodevelopmental Outcomes
新生儿光学相干断层扫描血管造影评估产后暴露对视网膜发育的影响并预测神经发育结果
  • 批准号:
    10588086
  • 财政年份:
    2023
  • 资助金额:
    $ 19.69万
  • 项目类别:
Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
  • 批准号:
    10602275
  • 财政年份:
    2023
  • 资助金额:
    $ 19.69万
  • 项目类别:
Highly Accelerated Magnetic Resonance Angiography using Deep Learning
使用深度学习的高加速磁共振血管造影
  • 批准号:
    2886357
  • 财政年份:
    2023
  • 资助金额:
    $ 19.69万
  • 项目类别:
    Studentship
Development of a method to simultaneously obtain cerebral blood flow information and progression of cerebral white matter lesions using head MR angiography.
开发一种使用头部磁共振血管造影同时获取脑血流信息和脑白质病变进展的方法。
  • 批准号:
    23K14839
  • 财政年份:
    2023
  • 资助金额:
    $ 19.69万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of a new diagnostic method for coronary artery disease using automated image analysis with postmortem coronary angiography CT
使用死后冠状动脉造影 CT 自动图像分析开发冠状动脉疾病的新诊断方法
  • 批准号:
    23K19795
  • 财政年份:
    2023
  • 资助金额:
    $ 19.69万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Novel ultrahigh speed swept source OCT angiography methods in diabetic retinopathy
糖尿病视网膜病变的新型超高速扫源 OCT 血管造影方法
  • 批准号:
    10656644
  • 财政年份:
    2023
  • 资助金额:
    $ 19.69万
  • 项目类别:
Automated Machine Learning-Based Brain Artery Segmentation, Anatomical Prior Labeling, and Feature Extraction on MR Angiography
基于自动机器学习的脑动脉分割、解剖先验标记和 MR 血管造影特征提取
  • 批准号:
    10759721
  • 财政年份:
    2023
  • 资助金额:
    $ 19.69万
  • 项目类别:
SCH: A physics-informed machine learning approach to dynamic blood flow analysis from static subtraction computed tomographic angiography imaging
SCH:一种基于物理的机器学习方法,用于从静态减影计算机断层血管造影成像中进行动态血流分析
  • 批准号:
    2205265
  • 财政年份:
    2022
  • 资助金额:
    $ 19.69万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了