Advancing SUDEP risk prediction using a multicenter case-control approach

使用多中心病例对照方法推进 SUDEP 风险预测

基本信息

  • 批准号:
    10290017
  • 负责人:
  • 金额:
    $ 68.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-15 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Project Summary Patients with epilepsy have a 25-fold elevated risk of sudden death. Sudden Unexpected Death in Epilepsy (SUDEP) is the most common disease-related cause of premature mortality in people with seizure disorders, affecting 1 of every 1000 patients annually. Despite this, mechanisms and risk factors of SUDEP remain largely unknown. Having ongoing generalized tonic-clonic seizures (GTCS) and no nocturnal supervision are the only definite risk factors, and reducing seizures is the only currently available preventive strategy. Several other clinical factors and potential biomarkers such as prolonged post-ictal generalized EEG suppression (PGES) that follows GTCS, abnormal inter-ictal ECG, and structural brain MRI abnormalities were associated with increased SUDEP risk, but none were rigorously confirmed in a large case-control study. While limitations of single-center studies in accumulating a sufficient number of cases are well recognized, prospective multicenter studies are also severely limited by the time, expense, and loss of follow-up constraining sample size and power. To sidestep these limitations, we propose a retrospective multisite case-control study that will screen >40,000 patients from 86 epilepsy monitoring centers worldwide, with a conservative expected total of >185 SUDEP cases and 370 age/sex-matched controls. Employing our comprehensive approaches to identify SUDEP cases combined with novel data harmonization techniques will allow us to: 1) provide an unprecedentedly large curated dataset of SUDEP, 2) identify clinical, electrophysiological, and imaging predictors of SUDEP using advanced machine learning methods, and 3) develop an individualized model to predict SUDEP risk that can be used in clinic. The proposed study will test the hypothesis that SUDEP cases exhibit different electroclinical and imaging characteristics that can provide an individualized prediction model. We will identify ictal electroclinical and interictal electrophysiological and neuroimaging biomarkers of SUDEP. We will compare markers of seizure severity between SUDEP cases and age/sex-matched living epilepsy patients, including decerebrate or decorticate posturing during GTCS, PGES duration, postictal bradycardia + asystole and post-convulsive central apnea. Additionally, we will assess putative interictal biomarkers including decreased low frequency power in ECG heart rate variability and decreased MRI-derived volumes in the right hippocampus/amygdala and brainstem. We will also employ machine-learning techniques to uncover novel biomarkers from interictal electrophysiological data. Finally, using a Bayesian framework, we will develop an individualized SUDEP risk prediction tool that combines clinical features with measures derived from routine EEG, ECG, and MRI. Our goal is to create a SUDEP case-control dataset to identify clinical risk factors and biomarkers that will help to create a robust model of an individual’s SUDEP risk based on measures derived from routine clinical care and testing such as interictal ECG, MRI and EEG. Such a tool could transform clinical practice, facilitate trials of SUDEP interventions, and ultimately save lives.
项目摘要 癫痫患者猝死的风险增加了25倍。癫痫患者的猝死 (SUDEP)是癫痫患者过早死亡的最常见疾病相关原因, 每年每1000名患者中就有1人受到影响。尽管如此,SUDEP的机制和风险因素在很大程度上仍然 未知。持续的全身性强直阵挛发作(GTCS)和没有夜间监护是唯一的 明确风险因素,减少癫痫发作是目前唯一可用的预防策略。其他几个 临床因素和潜在的生物标志物,如发作后持续的广泛性脑电抑制(PGES) GTCS后,发作间期异常的心电图和结构性脑MRI异常与增加有关 SUDEP风险,但没有一个在一项大型病例对照研究中得到严格证实。而单中心的局限性 在积累足够数量的病例方面的研究是公认的,前瞻性的多中心研究是 也受到时间、费用和后续损失的严重限制,限制了样本量和功率。绕开 在这些局限性下,我们提出了一项回顾性多点病例对照研究,该研究将筛查40,000名来自 全球86个癫痫监测中心,保守估计总共185例癫痫和370例癫痫 年龄/性别匹配的对照组。使用我们的综合方法来识别SUDEP病例,并结合 新的数据协调技术将使我们能够:1)提供空前庞大的精选数据集 SUDEP,2)使用先进的机器识别SUDEP的临床、电生理和成像预测指标 学习方法;3)建立预测SUDEP风险的个体化模型,可用于临床。 拟议的研究将检验SUDEP病例表现出不同的电临床和成像的假设 可以提供个性化预测模型的特征。我们将识别发作性电临床和 SUDEP的发作间期电生理和神经影像生物标志物。我们会比较癫痫发作的标志 SUDEP病例和年龄/性别匹配的活体癫痫患者之间的严重程度,包括去大脑或 GTCS、PGES持续时间、后发性心动过缓+停搏和惊厥后中枢脱皮质体位 呼吸暂停。此外,我们还将评估可能的发作间期生物标志物,包括低频功率降低。 右侧海马区/杏仁核和大脑半球的心电图心率变异性和MRI衍生体积减少 脑干。我们还将使用机器学习技术从发作间歇期发现新的生物标记物 电生理数据。最后,使用贝叶斯框架,我们将开发个性化的SUDEP风险 一种预测工具,将临床特征与常规脑电、心电和核磁共振得出的测量相结合。 我们的目标是创建一个SUDEP病例对照数据集,以识别临床风险因素和生物标记物,这将有助于 基于从常规临床护理和临床护理中得出的措施,创建个人SUDEP风险的稳健模型 发作间期心电图、MRI、EEG等检查。这样的工具可以改变临床实践,促进 SUDEP干预,并最终拯救生命。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Orrin Devinsky其他文献

Orrin Devinsky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Orrin Devinsky', 18)}}的其他基金

Machine learning approaches for improving EEG data utility in SUDEP research
用于提高 SUDEP 研究中脑电图数据效用的机器学习方法
  • 批准号:
    10593406
  • 财政年份:
    2021
  • 资助金额:
    $ 68.36万
  • 项目类别:
Advancing SUDEP risk prediction using a multicenter case-control approach
使用多中心病例对照方法推进 SUDEP 风险预测
  • 批准号:
    10463739
  • 财政年份:
    2021
  • 资助金额:
    $ 68.36万
  • 项目类别:
Development and validation of empirical models of the neuronal population activity underlying non-invasive human brain measurements
开发和验证非侵入性人脑测量中神经元群活动的经验模型
  • 批准号:
    9975889
  • 财政年份:
    2016
  • 资助金额:
    $ 68.36万
  • 项目类别:

相似海外基金

How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.36万
  • 项目类别:
    Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 68.36万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 68.36万
  • 项目类别:
    Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.36万
  • 项目类别:
    Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.36万
  • 项目类别:
    Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 68.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 68.36万
  • 项目类别:
    Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 68.36万
  • 项目类别:
    Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
  • 批准号:
    23K00129
  • 财政年份:
    2023
  • 资助金额:
    $ 68.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
  • 批准号:
    2883985
  • 财政年份:
    2023
  • 资助金额:
    $ 68.36万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了