Machine learning approaches for improving EEG data utility in SUDEP research
用于提高 SUDEP 研究中脑电图数据效用的机器学习方法
基本信息
- 批准号:10593406
- 负责人:
- 金额:$ 25.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdministrative SupplementAdoptedAgeAlgorithmsApplications GrantsArea Under CurveArtificial IntelligenceBenchmarkingBig DataBiological MarkersBrain StemCessation of lifeClinicalCollaborationsComplexCounselingDataData AnalysesData ScienceData SetDevelopmentElectrocardiogramElectroencephalographyEnsureEpilepsyExhibitsFeedbackGenerationsGoalsGrantHumanImageIndividualInterventionLabelLearningMRI ScansMachine LearningMagnetic Resonance ImagingMedicineMethodsModelingMorphologic artifactsNatural regenerationNeurologicNeurologyParentsPatientsPerformancePersonsPrevention strategyProcessPsychiatryPublishingReadinessRecordsReproducibilityResearchRetrospective cohort studyRiskRisk FactorsSample SizeSamplingSystemTechniquesTestingUnited States National Institutes of HealthValidationVisitanalytical toolbasebiomarker discoverycandidate markercase controlcomputerized toolsdata cleaningdata formatdata qualitydata standardsdeep learningdeep learning modeldistributed dataexperiencefrontierheart rate variabilityhigh riskimprovedinnovationinterestlearning strategymachine learning methodmachine learning modelmedical schoolsmortalitymultimodal datamultimodalitynovel markeropen dataparent grantparent projectpotential biomarkerpredictive modelingrepositoryresearch studyresponserisk predictionrisk prediction modelscreeningsexsuccesssudden unexpected death in epilepsytranslational impact
项目摘要
Project Summary
The parent R01 project will test the hypothesis that Sudden Unexpected Death in Epilepsy (SUDEP) cases
exhibit different clinical, electroclinical and imaging features that can be identified and validated (Aim 1) and then
incorporated into an individualized Bayesian risk prediction model (Aim 2). The study will compare SUDEP cases
with age/sex-matched living epilepsy patients to identify clinical features and biomarkers, focusing on
electroencephalography (EEG), electrocardiogram (ECG), and magnetic resonance imaging (MRI) data that are
easily obtained during routine clinical visits. Potential biomarkers include postictal generalized EEG suppression,
interictal ECG heart-rate variability, and decreased volume in limbic and brainstem regions on structural MRI
scans. To leverage state-of-the-art computational tools for biomarker discovery, the parent R01’s Aim 3 employs
artificial intelligence (AI) and machine learning (ML) techniques to uncover novel biomarkers from interictal EEG
data.
The proposed supplemental project is closely aligned with the parent R01’s Aim 3 and builds on the base
of augmented datasets and new AI/ML techniques. Our research team consists of SUDEP and AI/ML experts
with complementary expertise who are uniquely qualified to develop innovative analytic tools for EEG data AI/ML-
readiness. In Aim 1, we will develop ML models to enhance data interpretation. In Aim 2, we will employ data
augmentation techniques to improve the consistency of labeled EEG data from both SUDEP cases and living
epilepsy patient controls. Overall, this administrative supplemental proposal will further enrich the research aims
in our parent grant, and promote research rigor, transparency and reproducibility. Accomplishing these aims will
maximize the data utility and improve AI/ML-readiness in epilepsy research.
项目摘要
父R 01项目将检验癫痫意外猝死(SUDEP)病例
表现出不同的临床、电临床和成像特征,可以识别和验证(目标1),然后
将其纳入个体化贝叶斯风险预测模型(目标2)。该研究将比较SUDEP病例
与年龄/性别匹配的癫痫患者的生活,以确定临床特征和生物标志物,重点是
脑电图(EEG)、心电图(ECG)和磁共振成像(MRI)数据,
在常规临床访视中容易获得。潜在的生物标志物包括发作后全身性EEG抑制,
发作间期ECG心率变异性,结构MRI显示边缘系统和脑干区域体积减小
扫描。为了利用最先进的计算工具进行生物标志物发现,母体R 01的Aim 3采用了
人工智能(AI)和机器学习(ML)技术,从发作间期EEG中发现新的生物标志物
数据
拟议的补充项目与母公司R 01的目标3密切一致,并建立在基础上
增强数据集和新的AI/ML技术。我们的研究团队由SUDEP和AI/ML专家组成
具有互补的专业知识,能够为EEG数据AI/ML开发创新的分析工具-
准备就绪。在目标1中,我们将开发ML模型来增强数据解释。在目标2中,我们将使用数据
增强技术,以提高标记的EEG数据的一致性,从SUDEP的情况下,
癫痫患者控制。总的来说,这一行政补充建议将进一步丰富研究目标
在我们的母基金,并促进研究的严谨性,透明度和可重复性。实现这些目标将
最大化数据效用,提高癫痫研究中的AI/ML准备程度。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Orrin Devinsky其他文献
Orrin Devinsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Orrin Devinsky', 18)}}的其他基金
Advancing SUDEP risk prediction using a multicenter case-control approach
使用多中心病例对照方法推进 SUDEP 风险预测
- 批准号:
10290017 - 财政年份:2021
- 资助金额:
$ 25.16万 - 项目类别:
Advancing SUDEP risk prediction using a multicenter case-control approach
使用多中心病例对照方法推进 SUDEP 风险预测
- 批准号:
10463739 - 财政年份:2021
- 资助金额:
$ 25.16万 - 项目类别:
Development and validation of empirical models of the neuronal population activity underlying non-invasive human brain measurements
开发和验证非侵入性人脑测量中神经元群活动的经验模型
- 批准号:
9975889 - 财政年份:2016
- 资助金额:
$ 25.16万 - 项目类别:
相似海外基金
Proton-secreting epithelial cells as key modulators of epididymal mucosal immunity - Administrative Supplement
质子分泌上皮细胞作为附睾粘膜免疫的关键调节剂 - 行政补充
- 批准号:
10833895 - 财政年份:2023
- 资助金额:
$ 25.16万 - 项目类别:
A Longitudinal Qualitative Study of Fentanyl-Stimulant Polysubstance Use Among People Experiencing Homelessness (Administrative supplement)
无家可归者使用芬太尼兴奋剂多物质的纵向定性研究(行政补充)
- 批准号:
10841820 - 财政年份:2023
- 资助金额:
$ 25.16万 - 项目类别:
StrokeNet Administrative Supplement for the Funding Extension
StrokeNet 资助延期行政补充文件
- 批准号:
10850135 - 财政年份:2023
- 资助金额:
$ 25.16万 - 项目类别:
2023 NINDS Landis Mentorship Award - Administrative Supplement to NS121106 Control of Axon Initial Segment in Epilepsy
2023 年 NINDS 兰迪斯指导奖 - NS121106 癫痫轴突初始段控制的行政补充
- 批准号:
10896844 - 财政年份:2023
- 资助金额:
$ 25.16万 - 项目类别:
Biomarkers of Disease in Alcoholic Hepatitis Administrative Supplement
酒精性肝炎行政补充剂中疾病的生物标志物
- 批准号:
10840220 - 财政年份:2023
- 资助金额:
$ 25.16万 - 项目类别:
Administrative Supplement: Life-Space and Activity Digital Markers for Detection of Cognitive Decline in Community-Dwelling Older Adults: The RAMS Study
行政补充:用于检测社区老年人认知衰退的生活空间和活动数字标记:RAMS 研究
- 批准号:
10844667 - 财政年份:2023
- 资助金额:
$ 25.16万 - 项目类别:
Administrative Supplement: Improving Inference of Genetic Architecture and Selection with African Genomes
行政补充:利用非洲基因组改进遗传结构的推断和选择
- 批准号:
10891050 - 财政年份:2023
- 资助金额:
$ 25.16万 - 项目类别:
Power-Up Study Administrative Supplement to Promote Diversity
促进多元化的 Power-Up 研究行政补充
- 批准号:
10711717 - 财政年份:2023
- 资助金额:
$ 25.16万 - 项目类别:
Administrative Supplement for Peer-Delivered and Technology-Assisted Integrated Illness Management and Recovery
同行交付和技术辅助的综合疾病管理和康复的行政补充
- 批准号:
10811292 - 财政年份:2023
- 资助金额:
$ 25.16万 - 项目类别:
Administrative Supplement: Genome Resources for Model Amphibians
行政补充:模型两栖动物基因组资源
- 批准号:
10806365 - 财政年份:2023
- 资助金额:
$ 25.16万 - 项目类别: