Development of 3D-FAST Optical Interface for Rapid Volumetric Neural Sensing and Modulation
开发用于快速体积神经传感和调制的 3D-FAST 光学接口
基本信息
- 批准号:10294019
- 负责人:
- 金额:$ 266.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintAnimalsBehaviorBehavioral AssayBrainBrain regionCalciumCodeCouplingDevelopmentDevicesElectronicsElementsEvaluationFeedbackFunctional ImagingFutureHeadHippocampus (Brain)ImageImaging technologyIndividualLightLightingMeasurementMeasuresMembraneMicroscopyMonitorMotionMovementMusNeuronsNeurophysiology - biologic functionNoiseOdorsOpticsOutcomePatternPenetrationPhasePopulationPresynaptic TerminalsResolutionRodentRoleScanningSeriesSignal TransductionSliceStructureSumTechniquesTechnologyTestingTimeTissuesVariantawakebasal forebraincalcium indicatorcholinergiccholinergic neurondesigndetectorelectrical measurementexperimental studyhippocampal pyramidal neuronimaging propertiesimaging systemimprovedin vivoinsightlensmotor learningmulti-electrode arraysneural circuitneuroregulationnoveloptical imagingoptogeneticspreventprototyperelating to nervous systemsample fixationscaffoldspatiotemporaltissue phantomtooltwo photon microscopyvibrationvoltageway finding
项目摘要
Project Summary
To further our understanding of the function of neural circuits, there is a need for new tools that can
collect simultaneous measurements from large populations of neurons involved in a common neural
computation and provide precise functional modulation. Optical imaging in awake animals expressing
calcium or voltage indicators provides real-time functional and spatial information from individual
neurons within local neural circuits. The limitations of current imaging technology include small fields of
view encompassing single brain regions, and the requirement for head fixation, which prevents
naturalistic behavior. In addition, most optical imaging systems do not allow for simultaneous high-
resolution functional imaging in combination with spatially-localized optogenetic modulation.
To meet this challenge, we propose to develop an optical device (`3D-FAST') that allows for rapid, real-
time volumetric neural recording and precise optical stimulation. By pairing miniature arrays of
micropatterned LED emitters with the axial focusing capabilities of electrowetting lens technologies, we
will achieve duplex recording and stimulation of many thousands of neurons. Through utilization of novel
3D-printed scaffolding, we will be able to create modular, expandable, customizable lens arrays that
allow for recording of large-scale bi-directional neural interfaces for closed-loop modulation of neural
circuits.
We will create two versions of the 3D-FAST device. 3D-FAST-GECI that will provide fast, volumetric
imaging at 30 Hz for GCaMP imaging, and 3D-FAST-GEVI that will provide frame rates of 1 kHz at a
single plane combined with a slower, high resolution volume scan. Initially, the devices will be tested in
the anesthetized, and then awake, freely moving mouse for experiments using GCaMP, voltage indicators
ASAP and Voltron, and finally combining with localized optogenetics for closed loop feedback.
In sum, these experiments will demonstrate the unique capabilities of the 3D-FAST technology. Rapid,
imaging of improved voltage indicators will be paired with spatially-restricted light delivery for
optogenetic neural modulation for the first time in a freely moving mouse. The optical imaging properties
will be compared with ground-truth two-photon microscopy, and the functional consequence of
neuromodulation will be dissected through behavioral assays. The 3D-FAST tool will bring novel
capabilities to measuring and modulating large populations of neurons in freely-moving animals, to better
understand the neural computations that underlie behavior. In addition, this body of work will lay the
ground for future development of fully implantable optical recording and modulating units for use in
freely-moving, untethered naturalistic behavior experiments.
项目摘要
为了加深我们对神经回路功能的理解,需要新的工具来
从共同神经中涉及的大量神经元收集同步测量数据
计算并提供精确的功能调节。清醒动物表达的光学成像
钙或电压指示器提供来自个人的实时功能和空间信息
局部神经回路中的神经元。当前成像技术的局限性包括小范围的
包括单个大脑区域的视图,以及头部固定的要求,这防止了
自然主义的行为。此外,大多数光学成像系统不允许同时高电平
结合空间局域光遗传调制的分辨率函数成像。
为了迎接这一挑战,我们建议开发一种能够快速、实时地-
时间容积神经记录和精确的光学刺激。通过将微型阵列配对
微图案化LED发射器具有电润湿透镜技术的轴向聚焦能力,我们
将实现对数千个神经元的双重记录和刺激。通过对小说的利用
3D打印脚手架,我们将能够创建模块化、可扩展、可定制的镜头阵列,
允许记录大规模的双向神经接口,用于神经的闭环调制
电路。
我们将创建两个版本的3D-FAST设备。3D-FAST-GECI将提供快速、体积
GCaMP成像的30赫兹成像,以及3D-FAST-GEVI,它将提供1 kHz的帧速率
单平面与较慢的高分辨率体积扫描相结合。最初,这些设备将在
麻醉,然后清醒,自由移动的小鼠,用于使用GCaMP电压指示器进行实验
ASAP和Voltron,最后结合本地化光遗传学进行闭环反馈。
总而言之,这些实验将展示3D-FAST技术的独特能力。迅速,
改进的电压指示器的成像将与空间受限的光传输相结合,以
首次在自由活动的小鼠中进行光发生神经调制。光学成像特性
将与地面真相双光子显微镜进行比较,以及功能结果
神经调节将通过行为分析进行剖析。3D-FAST工具将带来新的
测量和调节自由活动动物的大量神经元的能力,以更好地
理解行为背后的神经计算。此外,这项工作将为
为未来开发全植入式光学记录和调制单元奠定了基础
自由移动、不受束缚的自然主义行为实验。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emily Gibson其他文献
Emily Gibson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emily Gibson', 18)}}的其他基金
Shedding light on brain circuits mediating navigation of the odor plume in a natural environment
揭示自然环境中调节气味羽流的大脑回路
- 批准号:
10241846 - 财政年份:2020
- 资助金额:
$ 266.58万 - 项目类别:
Shedding light on brain circuits mediating navigation of the odor plume in a natural environment
揭示自然环境中调节气味羽流的大脑回路
- 批准号:
10216476 - 财政年份:2020
- 资助金额:
$ 266.58万 - 项目类别:
3D-Fast Optical Interface for Rapid Volumetric Neural Sensing and Modulation
用于快速体积神经传感和调制的 3D 快速光学接口
- 批准号:
9764370 - 财政年份:2018
- 资助金额:
$ 266.58万 - 项目类别:
Controlled neuronal firing in vivo using two photon spatially shaped optogenetics
使用两个光子空间形状光遗传学控制体内神经元放电
- 批准号:
9770567 - 财政年份:2017
- 资助金额:
$ 266.58万 - 项目类别:
Controlled neuronal firing in vivo using two photon spatially shaped optogenetics
使用两个光子空间形状光遗传学控制体内神经元放电
- 批准号:
9404641 - 财政年份:2017
- 资助金额:
$ 266.58万 - 项目类别:
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 266.58万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 266.58万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 266.58万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 266.58万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 266.58万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 266.58万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 266.58万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 266.58万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 266.58万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 266.58万 - 项目类别:
Standard Grant