Development of 3D-FAST Optical Interface for Rapid Volumetric Neural Sensing and Modulation
开发用于快速体积神经传感和调制的 3D-FAST 光学接口
基本信息
- 批准号:10294019
- 负责人:
- 金额:$ 266.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintAnimalsBehaviorBehavioral AssayBrainBrain regionCalciumCodeCouplingDevelopmentDevicesElectronicsElementsEvaluationFeedbackFunctional ImagingFutureHeadHippocampus (Brain)ImageImaging technologyIndividualLightLightingMeasurementMeasuresMembraneMicroscopyMonitorMotionMovementMusNeuronsNeurophysiology - biologic functionNoiseOdorsOpticsOutcomePatternPenetrationPhasePopulationPresynaptic TerminalsResolutionRodentRoleScanningSeriesSignal TransductionSliceStructureSumTechniquesTechnologyTestingTimeTissuesVariantawakebasal forebraincalcium indicatorcholinergiccholinergic neurondesigndetectorelectrical measurementexperimental studyhippocampal pyramidal neuronimaging propertiesimaging systemimprovedin vivoinsightlensmotor learningmulti-electrode arraysneural circuitneuroregulationnoveloptical imagingoptogeneticspreventprototyperelating to nervous systemsample fixationscaffoldspatiotemporaltissue phantomtooltwo photon microscopyvibrationvoltageway finding
项目摘要
Project Summary
To further our understanding of the function of neural circuits, there is a need for new tools that can
collect simultaneous measurements from large populations of neurons involved in a common neural
computation and provide precise functional modulation. Optical imaging in awake animals expressing
calcium or voltage indicators provides real-time functional and spatial information from individual
neurons within local neural circuits. The limitations of current imaging technology include small fields of
view encompassing single brain regions, and the requirement for head fixation, which prevents
naturalistic behavior. In addition, most optical imaging systems do not allow for simultaneous high-
resolution functional imaging in combination with spatially-localized optogenetic modulation.
To meet this challenge, we propose to develop an optical device (`3D-FAST') that allows for rapid, real-
time volumetric neural recording and precise optical stimulation. By pairing miniature arrays of
micropatterned LED emitters with the axial focusing capabilities of electrowetting lens technologies, we
will achieve duplex recording and stimulation of many thousands of neurons. Through utilization of novel
3D-printed scaffolding, we will be able to create modular, expandable, customizable lens arrays that
allow for recording of large-scale bi-directional neural interfaces for closed-loop modulation of neural
circuits.
We will create two versions of the 3D-FAST device. 3D-FAST-GECI that will provide fast, volumetric
imaging at 30 Hz for GCaMP imaging, and 3D-FAST-GEVI that will provide frame rates of 1 kHz at a
single plane combined with a slower, high resolution volume scan. Initially, the devices will be tested in
the anesthetized, and then awake, freely moving mouse for experiments using GCaMP, voltage indicators
ASAP and Voltron, and finally combining with localized optogenetics for closed loop feedback.
In sum, these experiments will demonstrate the unique capabilities of the 3D-FAST technology. Rapid,
imaging of improved voltage indicators will be paired with spatially-restricted light delivery for
optogenetic neural modulation for the first time in a freely moving mouse. The optical imaging properties
will be compared with ground-truth two-photon microscopy, and the functional consequence of
neuromodulation will be dissected through behavioral assays. The 3D-FAST tool will bring novel
capabilities to measuring and modulating large populations of neurons in freely-moving animals, to better
understand the neural computations that underlie behavior. In addition, this body of work will lay the
ground for future development of fully implantable optical recording and modulating units for use in
freely-moving, untethered naturalistic behavior experiments.
项目摘要
为了进一步了解神经电路的功能,需要新工具可以
从涉及的大量神经元中收集同时测量的共同神经
计算并提供精确的功能调制。表达清醒动物的光学成像
钙或电压指标提供了个人的实时功能和空间信息
局部神经回路中的神经元。当前成像技术的局限性包括
查看包含单个大脑区域以及对头部固定的要求,这可以防止
自然行为。此外,大多数光学成像系统不允许同时高
分辨率功能成像结合空间定位的光遗传学调制。
为了应对这一挑战,我们建议开发一种光学设备(`3D-fast'),该设备可以快速,实现
时间体积神经记录和精确的光学刺激。通过配对微型阵列
微图案的LED发射器具有电动表镜头技术的轴向聚焦功能,我们
将实现数千个神经元的双工记录和刺激。通过新颖的利用
3D打印的脚手架,我们将能够创建模块化,可扩展,可自定义的镜头阵列
允许记录大规模双向神经界面,以进行神经的闭环调制
电路。
我们将创建两个版本的3D快速设备。 3D-fast-geci将提供快速,体积
用于GCAMP成像的30 Hz成像和3D-FAST-GEVI,将在A处提供1 kHz的帧速率
单个平面与较慢的高分辨率体积扫描结合在一起。最初,设备将在
使用GCAMP,电压指示器进行麻醉,然后清醒,自由移动鼠标进行实验
尽快和Voltron,最后与局部光遗传学结合,以进行封闭环反馈。
总而言之,这些实验将证明3D快速技术的独特功能。迅速的,
改进的电压指示器的成像将与空间限制的光输送配对
在自由移动的小鼠中首次获得光遗传学神经调节。光学成像属性
将与地面两光子显微镜进行比较,并将
神经调节将通过行为分析进行解剖。 3D快速工具将带来新颖
测量和调节自由移动动物中大量神经元种群的能力,以更好
了解行为基础的神经计算。此外,这项工作将是
未来开发完全可植入的光学记录和调节单元的理由
自由移动的,不受限制的自然主义行为实验。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
MicroLED/LED electro-optical integration techniques for non-display applications
- DOI:10.1063/5.0125103
- 发表时间:2023-06-01
- 期刊:
- 影响因子:15
- 作者:Kumar,V.;Kymissis,I.
- 通讯作者:Kymissis,I.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emily Gibson其他文献
Emily Gibson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emily Gibson', 18)}}的其他基金
Shedding light on brain circuits mediating navigation of the odor plume in a natural environment
揭示自然环境中调节气味羽流的大脑回路
- 批准号:
10241846 - 财政年份:2020
- 资助金额:
$ 266.58万 - 项目类别:
Shedding light on brain circuits mediating navigation of the odor plume in a natural environment
揭示自然环境中调节气味羽流的大脑回路
- 批准号:
10216476 - 财政年份:2020
- 资助金额:
$ 266.58万 - 项目类别:
3D-Fast Optical Interface for Rapid Volumetric Neural Sensing and Modulation
用于快速体积神经传感和调制的 3D 快速光学接口
- 批准号:
9764370 - 财政年份:2018
- 资助金额:
$ 266.58万 - 项目类别:
Controlled neuronal firing in vivo using two photon spatially shaped optogenetics
使用两个光子空间形状光遗传学控制体内神经元放电
- 批准号:
9770567 - 财政年份:2017
- 资助金额:
$ 266.58万 - 项目类别:
Controlled neuronal firing in vivo using two photon spatially shaped optogenetics
使用两个光子空间形状光遗传学控制体内神经元放电
- 批准号:
9404641 - 财政年份:2017
- 资助金额:
$ 266.58万 - 项目类别:
相似国自然基金
面向3D打印平行机的精确调度算法与动态调整机制研究
- 批准号:72301196
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
适于3D打印的肌球蛋白微凝胶Pickering乳液富脂鱼糜的稳定机制
- 批准号:32360595
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于3D生物打印类器官模型探究PAK5调控三阴性乳腺癌铂类耐药的机制研究
- 批准号:82303979
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
构建生物3D打印类器官芯片模型研究弹性蛋白-整合素在胃癌免疫微环境中的作用
- 批准号:32371472
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
3D打印功能化仿生神经纤维修复脊髓损伤的作用及机制研究
- 批准号:82301560
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Multi-tissue type condensations for trachea tissue regeneration via individual cell bioprinting
通过单细胞生物打印进行气管组织再生的多组织类型浓缩
- 批准号:
10643041 - 财政年份:2023
- 资助金额:
$ 266.58万 - 项目类别:
Modernization of 3-dimensional printing capabilities at the Aquatic Germplasm and Genetic Resource Center
水产种质和遗传资源中心 3 维打印能力的现代化
- 批准号:
10736961 - 财政年份:2023
- 资助金额:
$ 266.58万 - 项目类别:
A novel breast cancer therapy based on secreted protein ligands from CD36+ fibroblasts
基于 CD36 成纤维细胞分泌蛋白配体的新型乳腺癌疗法
- 批准号:
10635290 - 财政年份:2023
- 资助金额:
$ 266.58万 - 项目类别:
3D Printed Microfluidic Artificial Lung for Veteran Rehabilitation
用于退伍军人康复的 3D 打印微流控人工肺
- 批准号:
10629531 - 财政年份:2023
- 资助金额:
$ 266.58万 - 项目类别:
Production of 3D Bioprinted Autologous Vaginal Tissue Constructs for Reconstructive Applications
生产用于重建应用的 3D 生物打印自体阴道组织结构
- 批准号:
10672642 - 财政年份:2023
- 资助金额:
$ 266.58万 - 项目类别: