Functional role of RNA structure and m6A modification in viral genomes
RNA结构和m6A修饰在病毒基因组中的功能作用
基本信息
- 批准号:10301540
- 负责人:
- 金额:$ 12.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffinityBindingBinding ProteinsBioinformaticsBiologicalBiological AssayBiological ModelsBiologyCell Culture TechniquesCellsChemicalsChildComplexConsensusDengueDengue VirusDiseaseEducational workshopElementsEnterovirusEnterovirus 68EnvironmentEpigenetic ProcessFamilyFoundationsGene Expression RegulationGenetic TranscriptionGenomeGoalsHealthHigher Order Chromatin StructureHumanImmunologic FactorsInfectionInstructionLaboratoriesLife Cycle StagesLinkLung diseasesMapsMass Spectrum AnalysisMediatingMentorsMetabolismModificationMutationNucleotidesPhasePlayPositioning AttributeProtein BiosynthesisProteinsRNARNA ConformationRNA VirusesRNA-Protein InteractionRegulationResearchResolutionRoleScientistSiteSolidStructural ModelsStructureStructure-Activity RelationshipTechniquesTherapeuticTrainingVaccine TherapyVaccinesViralViral GenomeVirionVirusVirus DiseasesVirus ReplicationWorkacute flaccid myelitisbasecareerdesigndisorder controlgenome-wideimprovedmortalitymosquito-bornemutantnervous system disordernext generationnovelpreventprogramsrespiratorysymposiumvaccination strategyviral RNAvirologyvirus culture
项目摘要
PROJECT SUMMARY/ ABSTRACT
RNA viruses encode the information required to usurp cellular metabolism and gene regulation and to enable
their own replication in two ways: in the linear sequence of their RNA genomes and in complex higher order
structures. Although structured RNA elements are pervasive throughout viral genomes and have complex
regulatory effects on all stages of the virus life cycle, little is known about the extent to which RNA structures
occur across viral genomes or how critical structures function mechanistically. Post-transcriptional RNA genome
chemical modifications such as N6-methyladenosine (m6A) are regulators of infection in diverse viruses and can
have profound impacts on, or be impacted by, RNA structure. However, the link between RNA structure- and
m6A-mediated regulation of viral infectivity remains uncharacterized because we lack a comprehensive structural
understanding of RNA genomes and studies mapping m6A modifications have been imprecise. During the
mentored phase of this proposal, I will gain new training in virology, RNA epigenetics, and RNA chemical biology
to define how RNA elements and m6A modifications regulate viral replication and infection. In Aim 1, I will
characterize RNA structure interrelationships with the m6A post-transcriptional RNA chemical modification by
creating high-resolution RNA structure models and m6A modification site maps for the dengue virus (DENV) and
the respiratory enterovirus EV-D68 RNA genomes. No broadly effective vaccines or therapeutics are available
to prevent or treat the serious infections caused by these two single-stranded, positive-sense RNA viruses from
distinct virus families. Through Aim 2, I will establish the functional importance of m6A-related RNA genome
structures in DENV and EV-D68 viral life cycle stages using cell culture-based virus functional assays. Finally,
in Aim 3, I will define structure-function relationships in m6A-related RNA structures in DENV and EV-D68
genomes by evaluating dynamic changes in RNA structure, m6A modification, and protein binding. Together,
these studies will reveal the complex roles that interrelationships between RNA structure and m6A modification
play in regulating the life cycles of diverse RNA viruses and will identify novel RNA regulatory motifs that might
be exploited in the design of anti-DENV and anti-EV-D68 therapeutics and vaccination strategies. I have
assembled an expert team of mentors and collaborators and plan to attend workshops, seminars, and
conferences that will result in the training necessary to achieve the research goals proposed here and to
transition into a successful career as an independent research scientist. The excellent training environments in
the Weeks and Horner laboratories, along with hands-on training from my collaborator Dr. Cameron, will provide
me with a solid foundation on which to build a successful independent research program.
项目总结/摘要
RNA病毒编码所需的信息,以篡夺细胞代谢和基因调控,
它们以两种方式复制:RNA基因组的线性序列和复杂的高级序列
结构.尽管结构化RNA元件在整个病毒基因组中是普遍存在的,并且具有复杂的生物学特性。
尽管RNA对病毒生命周期的所有阶段都有调节作用,但人们对RNA结构的程度知之甚少。
发生在病毒基因组中或关键结构如何机械地发挥作用。转录后RNA基因组
化学修饰如N6-甲基腺苷(m6 A)是多种病毒感染的调节剂,
对RNA结构有着深远的影响,或者受到RNA结构的影响。然而,RNA结构和
m6 A介导的病毒感染性调节仍然没有特征,因为我们缺乏一个全面的结构,
对RNA基因组的理解和绘制m6 A修饰的研究一直不精确。期间
在这个建议的指导阶段,我将获得病毒学,RNA表观遗传学和RNA化学生物学的新培训
确定RNA元件和m6 A修饰如何调节病毒复制和感染。在目标1中,我将
通过以下方式表征RNA结构与m6 A转录后RNA化学修饰的相互关系:
创建登革热病毒(DENV)的高分辨率RNA结构模型和m6 A修饰位点图,
呼吸道肠道病毒EV-D 68 RNA基因组。没有广泛有效的疫苗或治疗方法
预防或治疗这两种单链正义RNA病毒引起的严重感染,
不同的病毒家族通过目标2,我将确定m6 A相关RNA基因组的功能重要性
DENV和EV-D 68病毒生命周期阶段的结构,使用基于细胞培养的病毒功能测定。最后,
在目标3中,我将定义DENV和EV-D 68中m6 A相关RNA结构的结构-功能关系
通过评估RNA结构,m6 A修饰和蛋白质结合的动态变化来研究基因组。在一起,
这些研究将揭示RNA结构和m6 A修饰之间相互关系的复杂作用,
在调节不同RNA病毒的生命周期中发挥作用,并将确定新的RNA调节基序,
在抗DENV和抗EV-D 68治疗剂和疫苗接种策略的设计中被利用。我有
组建了一个由导师和合作者组成的专家团队,并计划参加讲习班、研讨会和
这些会议将导致必要的培训,以实现这里提出的研究目标,
过渡到一个成功的职业生涯作为一个独立的研究科学家。优秀的培训环境,
威克斯和霍纳实验室,沿着我的合作者卡梅隆博士的实践培训,将提供
我有一个坚实的基础,在此基础上建立一个成功的独立研究计划。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark A Boerneke其他文献
Mark A Boerneke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark A Boerneke', 18)}}的其他基金
Functional role of RNA structure and m6A modification in viral genomes
RNA结构和m6A修饰在病毒基因组中的功能作用
- 批准号:
10458770 - 财政年份:2021
- 资助金额:
$ 12.1万 - 项目类别:
相似国自然基金
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:32170319
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
- 批准号:31672538
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
番茄EIN3-binding F-box蛋白2超表达诱导单性结实和果实成熟异常的机制研究
- 批准号:31372080
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
P53 binding protein 1 调控乳腺癌进展转移及化疗敏感性的机制研究
- 批准号:81172529
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
DBP(Vitamin D Binding Protein)在多发性硬化中的作用和相关机制的蛋白质组学研究
- 批准号:81070952
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
研究EB1(End-Binding protein 1)的癌基因特性及作用机制
- 批准号:30672361
- 批准年份:2006
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
Analysis of affinity changes of actin-binding proteins by mechanical response of actin molecular structures
通过肌动蛋白分子结构的机械响应分析肌动蛋白结合蛋白的亲和力变化
- 批准号:
19K06603 - 财政年份:2019
- 资助金额:
$ 12.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Regulation of miRNA biogenesis in Arabidopsis - An RNA-affinity based approach to characterize pri-miRNA stem-loop binding proteins
拟南芥中 miRNA 生物合成的调控 - 一种基于 RNA 亲和力的方法来表征 pri-miRNA 茎环结合蛋白
- 批准号:
314773174 - 财政年份:2016
- 资助金额:
$ 12.1万 - 项目类别:
Research Grants
Developing high affinity ligands of glycan binding proteins
开发聚糖结合蛋白的高亲和力配体
- 批准号:
9166443 - 财政年份:2016
- 资助金额:
$ 12.1万 - 项目类别:
Development of the affinity matrix for comprehensive analysis of ligand- binding proteins
开发用于综合分析配体结合蛋白的亲和矩阵
- 批准号:
22710219 - 财政年份:2010
- 资助金额:
$ 12.1万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Research on techniques for the identification of carbohydrate binding proteins using glycome-wide oligosaccharides as affinity probes
以全糖组寡糖为亲和探针的糖结合蛋白鉴定技术研究
- 批准号:
18550145 - 财政年份:2006
- 资助金额:
$ 12.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Engineering high affinity integrin binding proteins
工程化高亲和力整合素结合蛋白
- 批准号:
7194212 - 财政年份:2004
- 资助金额:
$ 12.1万 - 项目类别:
Engineering high affinity integrin binding proteins
工程化高亲和力整合素结合蛋白
- 批准号:
6712379 - 财政年份:2004
- 资助金额:
$ 12.1万 - 项目类别:
Engineering high affinity integrin binding proteins
工程化高亲和力整合素结合蛋白
- 批准号:
7064760 - 财政年份:2004
- 资助金额:
$ 12.1万 - 项目类别:
Engineering high affinity integrin binding proteins
工程化高亲和力整合素结合蛋白
- 批准号:
6892795 - 财政年份:2004
- 资助金额:
$ 12.1万 - 项目类别:
Engineering high affinity integrin binding proteins
工程化高亲和力整合素结合蛋白
- 批准号:
7360302 - 财政年份:2004
- 资助金额:
$ 12.1万 - 项目类别: