Functional role of RNA structure and m6A modification in viral genomes
RNA结构和m6A修饰在病毒基因组中的功能作用
基本信息
- 批准号:10458770
- 负责人:
- 金额:$ 12.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffinityBindingBinding ProteinsBioinformaticsBiologicalBiological AssayBiological ModelsBiologyCell Culture TechniquesCellsChemicalsChildComplexConsensusDengueDengue VirusDiseaseEducational workshopElementsEnterovirusEnterovirus 68EnvironmentEpigenetic ProcessFamilyFoundationsGene Expression RegulationGenetic TranscriptionGenomeGoalsHealthHigher Order Chromatin StructureHumanImmunologic FactorsInfectionInstructionLaboratoriesLife Cycle StagesLinkMapsMass Spectrum AnalysisMediatingMentorsMetabolismModelingModificationMutationNucleotidesPhasePlayPositioning AttributeProtein BiosynthesisProteinsRNARNA ConformationRNA VirusesRNA-Protein InteractionRegulationResearchResolutionRespiratory DiseaseRoleScientistSiteSolidStructureStructure-Activity RelationshipTechniquesTherapeuticTrainingVaccine TherapyVaccinesViralViral GenomeVirionVirusVirus DiseasesVirus ReplicationWorkacute flaccid myelitisbasecareerdesigndisorder controlgenome-wideimprovedmortalitymosquito-bornemutantnervous system disordernext generationnovelpreventprogramsrespiratorysymposiumvaccination strategyviral RNAvirologyvirus culture
项目摘要
PROJECT SUMMARY/ ABSTRACT
RNA viruses encode the information required to usurp cellular metabolism and gene regulation and to enable
their own replication in two ways: in the linear sequence of their RNA genomes and in complex higher order
structures. Although structured RNA elements are pervasive throughout viral genomes and have complex
regulatory effects on all stages of the virus life cycle, little is known about the extent to which RNA structures
occur across viral genomes or how critical structures function mechanistically. Post-transcriptional RNA genome
chemical modifications such as N6-methyladenosine (m6A) are regulators of infection in diverse viruses and can
have profound impacts on, or be impacted by, RNA structure. However, the link between RNA structure- and
m6A-mediated regulation of viral infectivity remains uncharacterized because we lack a comprehensive structural
understanding of RNA genomes and studies mapping m6A modifications have been imprecise. During the
mentored phase of this proposal, I will gain new training in virology, RNA epigenetics, and RNA chemical biology
to define how RNA elements and m6A modifications regulate viral replication and infection. In Aim 1, I will
characterize RNA structure interrelationships with the m6A post-transcriptional RNA chemical modification by
creating high-resolution RNA structure models and m6A modification site maps for the dengue virus (DENV) and
the respiratory enterovirus EV-D68 RNA genomes. No broadly effective vaccines or therapeutics are available
to prevent or treat the serious infections caused by these two single-stranded, positive-sense RNA viruses from
distinct virus families. Through Aim 2, I will establish the functional importance of m6A-related RNA genome
structures in DENV and EV-D68 viral life cycle stages using cell culture-based virus functional assays. Finally,
in Aim 3, I will define structure-function relationships in m6A-related RNA structures in DENV and EV-D68
genomes by evaluating dynamic changes in RNA structure, m6A modification, and protein binding. Together,
these studies will reveal the complex roles that interrelationships between RNA structure and m6A modification
play in regulating the life cycles of diverse RNA viruses and will identify novel RNA regulatory motifs that might
be exploited in the design of anti-DENV and anti-EV-D68 therapeutics and vaccination strategies. I have
assembled an expert team of mentors and collaborators and plan to attend workshops, seminars, and
conferences that will result in the training necessary to achieve the research goals proposed here and to
transition into a successful career as an independent research scientist. The excellent training environments in
the Weeks and Horner laboratories, along with hands-on training from my collaborator Dr. Cameron, will provide
me with a solid foundation on which to build a successful independent research program.
项目摘要/摘要
RNA病毒编码篡夺细胞代谢和基因调节所需的信息,并启用
他们自己的复制有两种方式:以其RNA基因组的线性序列和复杂的更高顺序
结构。尽管结构化的RNA元素在整个病毒基因组中普遍存在,并且具有复杂
对病毒生命周期的所有阶段的调节作用,关于RNA结构的程度知之甚少
发生在病毒基因组或关键结构机械上的功能。转录后RNA基因组
N6-甲基拉丹氨酸(M6A)等化学修饰是各种病毒中感染的调节剂,并且可以
对RNA结构产生深远影响或受到RNA结构的影响。但是,RNA结构与
M6A介导的病毒感染性调节仍然没有表征,因为我们缺乏全面的结构
对RNA基因组和研究映射M6A修饰的理解已不精确。在
该提案的指导阶段,我将获得病毒学,RNA表观遗传学和RNA化学生物学的新培训
定义RNA元素和M6A修饰如何调节病毒复制和感染。在AIM 1中,我会
通过M6A转录后RNA化学修饰来表征RNA结构的相互关系
为登革热病毒(DENV)和
呼吸道肠病毒EV-D68 RNA基因组。没有广泛有效的疫苗或治疗剂
为了防止或治疗由这两种单链,正义的RNA病毒引起的严重感染
不同的病毒家族。通过AIM 2,我将确定与M6A相关RNA基因组的功能重要性
使用基于细胞培养的病毒功能分析的DENV和EV-D68病毒生命周期阶段中的结构。最后,
在AIM 3中,我将在DENV和EV-D68中的M6A相关RNA结构中定义结构功能关系
通过评估RNA结构,M6A修饰和蛋白质结合的动态变化来评估基因组。一起,
这些研究将揭示RNA结构和M6A修饰之间相互关系的复杂作用
在调节各种RNA病毒的生命周期中发挥作用,并将确定可能
在抗-DENV和Anti-EV-D68治疗和疫苗接种策略的设计中被利用。我有
组建了一个由导师和合作者组成的专家团队,并计划参加研讨会,研讨会和
会议将导致实现此处提出的研究目标所必需的培训
过渡到独立研究科学家成功的职业生涯。出色的培训环境
Weeks和Horner Laboratories以及我的合作者Cameron博士的动手培训将提供
我以坚实的基础来建立成功的独立研究计划。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark A Boerneke其他文献
Mark A Boerneke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark A Boerneke', 18)}}的其他基金
Functional role of RNA structure and m6A modification in viral genomes
RNA结构和m6A修饰在病毒基因组中的功能作用
- 批准号:
10301540 - 财政年份:2021
- 资助金额:
$ 12.1万 - 项目类别:
相似国自然基金
全新从头快速设计靶向COVID-19病毒及其突变株S蛋白超高亲和力阻断结合蛋白研究
- 批准号:
- 批准年份:2022
- 资助金额:51 万元
- 项目类别:面上项目
游离型血红蛋白(Hb)与活化的血管性血友病因子(VWF)高亲和力结合的机制及其抗凝功能的研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
游离型血红蛋白(Hb)与活化的血管性血友病因子(VWF)高亲和力结合的机制及其抗凝功能的研究
- 批准号:82270138
- 批准年份:2022
- 资助金额:52.00 万元
- 项目类别:面上项目
估计和解释序列变体对蛋白质稳定性、结合亲和力以及功能的影响
- 批准号:31701136
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
蛋白质与小分子结合亲和力变化的结构基础研究
- 批准号:U1632124
- 批准年份:2016
- 资助金额:54.0 万元
- 项目类别:联合基金项目
相似海外基金
Molecular basis of glycan recognition by T and B cells
T 和 B 细胞识别聚糖的分子基础
- 批准号:
10549648 - 财政年份:2023
- 资助金额:
$ 12.1万 - 项目类别:
Accelerating drug discovery via ML-guided iterative design and optimization
通过机器学习引导的迭代设计和优化加速药物发现
- 批准号:
10552325 - 财政年份:2023
- 资助金额:
$ 12.1万 - 项目类别:
Selective targeting of matrix metalloproteinases for developing preterm labor therapeutics
选择性靶向基质金属蛋白酶用于开发早产疗法
- 批准号:
10509786 - 财政年份:2023
- 资助金额:
$ 12.1万 - 项目类别:
A next-generation extendable simulation environment for affordable, accurate, and efficient free energy simulations
下一代可扩展模拟环境,可实现经济、准确且高效的自由能源模拟
- 批准号:
10638121 - 财政年份:2023
- 资助金额:
$ 12.1万 - 项目类别: