Multicenter Quantitative MRI Assessment of Breast Cancer Therapy Response
乳腺癌治疗反应的多中心定量 MRI 评估
基本信息
- 批准号:10307586
- 负责人:
- 金额:$ 58.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-12-01 至 2025-11-30
- 项目状态:未结题
- 来源:
- 关键词:Assessment toolBenchmarkingBiological ProcessBreastBreast Cancer TreatmentBreast Cancer therapyBreast Magnetic Resonance ImagingCancer BurdenCell membraneClinicalClinical DataClinical Decision Support SystemsClinical TrialsComputer softwareContrast MediaDataData AnalysesData SetDiffusionDiffusion Magnetic Resonance ImagingDimensionsDrug KineticsEvaluationFutureGoalsHead and Neck CancerHealth SciencesHomebound PersonsImageImaging DeviceIn complete remissionKineticsMRI ScansMagnetic Resonance ImagingMalignant NeoplasmsMammary NeoplasmsMeasurementMeasuresMetabolicMethodsModelingMulticenter StudiesNeoadjuvant TherapyOnline SystemsOregonOutcomePathologicPatientsPerformancePerfusionPermeabilityPhysiologicalPrediction of Response to TherapyProceduresProspective StudiesProtocols documentationResearchResidual CancersSignal TransductionSiteSoftware ToolsSolid NeoplasmSpeedSystemSystems IntegrationTestingTherapy EvaluationTimeTissuesTrainingTranslationsTreatment ProtocolsTreatment-related toxicityUniversitiesValidationVariantVendorWatercancer imagingcancer therapycancer typechemotherapyclinical applicationclinical decision supportclinical decision-makingclinical practiceclinical translationcontrast enhanceddata acquisitiondigitalearly phase clinical trialhuman dataimaging biomarkerimaging modalityimprovedindividual patientindividual responsemalignant breast neoplasmmolecular markernon-invasive imagingpatient subsetspharmacokinetic modelprecision medicinepredicting responsepredictive markerpredictive modelingprospectivequantitative imagingresearch clinical testingresponsetooltreatment responsetumor
项目摘要
Project Summary
Quantitative imaging of tumor biological functions have been shown superior to imaging tumor size for
prediction and evaluation of cancer response to therapy. Conventionally used as a noninvasive imaging
method to assess microvascular perfusion and permeability, dynamic contrast-enhanced (DCE) MRI is
increasingly employed in research and early phase clinical trial settings to measure and, importantly, predict
tumor response to treatment. The standard two- or three-parameter Tofts models (TMs) are the most
commonly used for pharmacokinetic (PK) modeling of DCE-MRI data to estimate quantitative imaging
biomarkers such as Ktrans and ve. However, the TM is suboptimal in that it ignores the real physiological
phenomenon of water exchange between tissue compartments when quantifying tissue concentration of
contrast agent from MRI signal intensities. The Shutter-Speed Model (SSM) developed by the Oregon Health
& Science University (OHSU) group is a more comprehensive PK model, taking into account the
intercompartmental water exchange kinetics. Recent single-center OHSU studies have demonstrated superior
ability of SSM DCE-MRI for prediction and evaluation of therapy response in breast cancer compared to the
TM. Furthermore, it was recently discovered that the SSM-exclusive parameter, τi (mean intracellular water
lifetime), is a new imaging biomarker of metabolic activity, and was the only baseline (pre-treatment) marker
predictive of response to neoadjuvant chemotherapy (NAC) in breast cancer and overall survival in head and
neck cancer. τi also has the advantage of being significantly less sensitive to variation in arterial input function
(AIF) than the conventional PK parameters. Using the data acquisition and analysis protocols optimized by the
OHSU group, the overall goal of this project is to validate the robustness of SSM DCE-MRI as a quantitative
imaging tool for assessment of cancer therapy response in a prospective study under a multicenter setting
across three major MRI scanner platforms, using NAC treatment of breast cancer as the testing clinical
application. Specifically, we will (1) implement the optimized SSM DCE-MRI data acquisition and analysis
protocols and perform QA/QC in a multicenter setting; (2) conduct the multicenter prospective study to validate
the utility of SSM DCE-MRI for prediction and evaluation of breast cancer response to NAC; and (3) refine an
OHSU-developed web-based clinical decision support system by developing and incorporating a predictive
model of therapy response that integrates imaging markers with clinical and histopathological data, and
evaluate the system adaptability in clinical workflow.
项目摘要
肿瘤生物学功能的定量成像已经显示出上级于肿瘤大小的成像,
预测和评估癌症对治疗的反应。常规用作非侵入性成像
动态对比增强(DCE)MRI是评估微血管灌注和渗透性的一种方法,
越来越多地用于研究和早期临床试验环境,以测量,重要的是,
肿瘤对治疗的反应。标准的两参数或三参数Tofts模型(TM)是最常见的
通常用于DCE-MRI数据的药代动力学(PK)建模,以估计定量成像
生物标志物如Ktranss和ve。然而,TM是次优的,因为它忽略了真实的生理
当定量组织浓度时,组织隔室之间的水交换现象
MRI信号强度。俄勒冈州卫生部开发的快门速度模型(SSM)
与科学大学(OHSU)组是一个更全面的PK模型,考虑到
隔室间水交换动力学。最近的单中心OHSU研究表明上级
SSM DCE-MRI预测和评价乳腺癌治疗反应的能力与
TM.此外,最近发现SSM专用参数τi(平均细胞内水)
终生),是代谢活动的一种新的成像生物标志物,也是唯一的基线(治疗前)标志物
预测乳腺癌对新辅助化疗(NAC)的反应和头部和
颈部癌症τi还具有对动脉输入功能的变化显著不敏感的优点
(AIF)常规PK参数。使用优化的数据采集和分析协议,
OHSU小组,本项目的总体目标是验证SSM DCE-MRI作为定量
一项多中心前瞻性研究中评估癌症治疗反应的成像工具
在三个主要的MRI扫描仪平台上,使用NAC治疗乳腺癌作为临床试验,
应用程序.具体而言,我们将(1)实现优化的SSM DCE-MRI数据采集和分析
方案,并在多中心环境中进行QA/QC;(2)进行多中心前瞻性研究,以验证
SSM DCE-MRI用于预测和评价乳腺癌对NAC的反应的实用性;以及(3)改进
OHSU开发的基于网络的临床决策支持系统,通过开发和整合预测
将成像标志物与临床和组织病理学数据相结合的治疗反应模型,以及
评价系统在临床工作流程中的适应性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
WEI HUANG其他文献
WEI HUANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('WEI HUANG', 18)}}的其他基金
Multicenter Quantitative MRI Assessment of Breast Cancer Therapy Response
乳腺癌治疗反应的多中心定量 MRI 评估
- 批准号:
10520051 - 财政年份:2020
- 资助金额:
$ 58.58万 - 项目类别:
Shutter-Speed Model DCE-MRI for Assessment of Response to Cancer Therapy
用于评估癌症治疗反应的快门速度模型 DCE-MRI
- 批准号:
8533769 - 财政年份:2011
- 资助金额:
$ 58.58万 - 项目类别:
Shutter-Speed Model DCE-MRI for Assessment of Response to Cancer Therapy
用于评估癌症治疗反应的快门速度模型 DCE-MRI
- 批准号:
8187566 - 财政年份:2011
- 资助金额:
$ 58.58万 - 项目类别:
Shutter-Speed Model DCE-MRI for Assessment of Response to Cancer Therapy
用于评估癌症治疗反应的快门速度模型 DCE-MRI
- 批准号:
8327116 - 财政年份:2011
- 资助金额:
$ 58.58万 - 项目类别:
Shutter-Speed DCE-MRI Discrimination of Benign and Malignant Breast Disease
快门速度 DCE-MRI 乳腺良恶性疾病鉴别
- 批准号:
7682573 - 财政年份:2007
- 资助金额:
$ 58.58万 - 项目类别:
Shutter-Speed DCE-MRI Discrimination of Benign and Malignant Breast Disease
快门速度 DCE-MRI 乳腺良恶性疾病鉴别
- 批准号:
7313975 - 财政年份:2007
- 资助金额:
$ 58.58万 - 项目类别:
Shutter-Speed DCE-MRI Discrimination of Benign and Malignant Breast Disease
快门速度 DCE-MRI 乳腺良恶性疾病鉴别
- 批准号:
7496954 - 财政年份:2007
- 资助金额:
$ 58.58万 - 项目类别:
相似国自然基金
企业绩效评价的DEA-Benchmarking方法及动态博弈研究
- 批准号:70571028
- 批准年份:2005
- 资助金额:16.5 万元
- 项目类别:面上项目
相似海外基金
An innovative EDI data, insights & peer benchmarking platform enabling global business leaders to build data-led EDI strategies, plans and budgets.
创新的 EDI 数据、见解
- 批准号:
10100319 - 财政年份:2024
- 资助金额:
$ 58.58万 - 项目类别:
Collaborative R&D
BioSynth Trust: Developing understanding and confidence in flow cytometry benchmarking synthetic datasets to improve clinical and cell therapy diagnos
BioSynth Trust:发展对流式细胞仪基准合成数据集的理解和信心,以改善临床和细胞治疗诊断
- 批准号:
2796588 - 财政年份:2023
- 资助金额:
$ 58.58万 - 项目类别:
Studentship
Collaborative Research: SHF: Medium: A Comprehensive Modeling Framework for Cross-Layer Benchmarking of In-Memory Computing Fabrics: From Devices to Applications
协作研究:SHF:Medium:内存计算结构跨层基准测试的综合建模框架:从设备到应用程序
- 批准号:
2347024 - 财政年份:2023
- 资助金额:
$ 58.58万 - 项目类别:
Standard Grant
Elements: CausalBench: A Cyberinfrastructure for Causal-Learning Benchmarking for Efficacy, Reproducibility, and Scientific Collaboration
要素:CausalBench:用于因果学习基准测试的网络基础设施,以实现有效性、可重复性和科学协作
- 批准号:
2311716 - 财政年份:2023
- 资助金额:
$ 58.58万 - 项目类别:
Standard Grant
Benchmarking collisional rates and hot electron transport in high-intensity laser-matter interaction
高强度激光-物质相互作用中碰撞率和热电子传输的基准测试
- 批准号:
2892813 - 财政年份:2023
- 资助金额:
$ 58.58万 - 项目类别:
Studentship
FET: Medium: Quantum Algorithms, Complexity, Testing and Benchmarking
FET:中:量子算法、复杂性、测试和基准测试
- 批准号:
2311733 - 财政年份:2023
- 资助金额:
$ 58.58万 - 项目类别:
Continuing Grant
Collaborative Research: BeeHive: A Cross-Problem Benchmarking Framework for Network Biology
合作研究:BeeHive:网络生物学的跨问题基准框架
- 批准号:
2233969 - 财政年份:2023
- 资助金额:
$ 58.58万 - 项目类别:
Continuing Grant
Establishing and benchmarking advanced methods to comprehensively characterize somatic genome variation in single human cells
建立先进方法并对其进行基准测试,以全面表征单个人类细胞的体细胞基因组变异
- 批准号:
10662975 - 财政年份:2023
- 资助金额:
$ 58.58万 - 项目类别:
QUARREFOUR - Benchmarking Multi-core Quantum Computing Systems
QUARREFOUR - 多核量子计算系统基准测试
- 批准号:
10074653 - 财政年份:2023
- 资助金额:
$ 58.58万 - 项目类别:
Collaborative R&D