Multicenter Quantitative MRI Assessment of Breast Cancer Therapy Response
乳腺癌治疗反应的多中心定量 MRI 评估
基本信息
- 批准号:10520051
- 负责人:
- 金额:$ 57.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-12-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAdjuvant ChemotherapyAssessment toolBenchmarkingBiological ProcessBlood VesselsBreastBreast Cancer TreatmentBreast Cancer therapyBreast Magnetic Resonance ImagingCancer BurdenCell membraneClinicalClinical DataClinical Decision Support SystemsClinical TrialsComputer softwareContrast MediaDataData AnalysesData SetDiffusionDiffusion Magnetic Resonance ImagingDimensionsDrug KineticsEvaluationFutureGoalsHead and Neck CancerHealthImageImaging DeviceIn complete remissionKineticsMRI ScansMagnetic Resonance ImagingMalignant NeoplasmsMammary NeoplasmsMapsMeasurementMeasuresMetabolicMethodsModelingMulticenter StudiesNeoadjuvant TherapyOnline SystemsOregonOutcomePathologicPatientsPerformancePerfusionPermeabilityPhysiologicalPrediction of Response to TherapyProceduresProspective StudiesProtocols documentationResearchResidual CancersScienceSignal TransductionSiteSoftware ToolsSolid NeoplasmSpeedSystemTestingTherapy EvaluationTimeTissuesTrainingTranslationsTreatment ProtocolsTreatment-related toxicityUniversitiesValidationVariantVendorWatercancer imagingcancer therapycancer typeclinical applicationclinical decision supportclinical decision-makingclinical practiceclinical translationcontrast enhanceddata acquisitiondigitalearly phase clinical trialhuman dataimaging biomarkerimaging modalityimprovedindividual patientindividual responsemagnetic resonance imaging biomarkermalignant breast neoplasmmolecular markernon-invasive imagingpatient subsetspharmacokinetic modelprecision medicinepredicting responsepredictive markerpredictive modelingpredictive toolsprospectivequantitative imagingresearch clinical testingresponsetreatment responsetumor
项目摘要
Project Summary
Quantitative imaging of tumor biological functions have been shown superior to imaging tumor size for
prediction and evaluation of cancer response to therapy. Conventionally used as a noninvasive imaging
method to assess microvascular perfusion and permeability, dynamic contrast-enhanced (DCE) MRI is
increasingly employed in research and early phase clinical trial settings to measure and, importantly, predict
tumor response to treatment. The standard two- or three-parameter Tofts models (TMs) are the most
commonly used for pharmacokinetic (PK) modeling of DCE-MRI data to estimate quantitative imaging
biomarkers such as Ktrans and ve. However, the TM is suboptimal in that it ignores the real physiological
phenomenon of water exchange between tissue compartments when quantifying tissue concentration of
contrast agent from MRI signal intensities. The Shutter-Speed Model (SSM) developed by the Oregon Health
& Science University (OHSU) group is a more comprehensive PK model, taking into account the
intercompartmental water exchange kinetics. Recent single-center OHSU studies have demonstrated superior
ability of SSM DCE-MRI for prediction and evaluation of therapy response in breast cancer compared to the
TM. Furthermore, it was recently discovered that the SSM-exclusive parameter, τi (mean intracellular water
lifetime), is a new imaging biomarker of metabolic activity, and was the only baseline (pre-treatment) marker
predictive of response to neoadjuvant chemotherapy (NAC) in breast cancer and overall survival in head and
neck cancer. τi also has the advantage of being significantly less sensitive to variation in arterial input function
(AIF) than the conventional PK parameters. Using the data acquisition and analysis protocols optimized by the
OHSU group, the overall goal of this project is to validate the robustness of SSM DCE-MRI as a quantitative
imaging tool for assessment of cancer therapy response in a prospective study under a multicenter setting
across three major MRI scanner platforms, using NAC treatment of breast cancer as the testing clinical
application. Specifically, we will (1) implement the optimized SSM DCE-MRI data acquisition and analysis
protocols and perform QA/QC in a multicenter setting; (2) conduct the multicenter prospective study to validate
the utility of SSM DCE-MRI for prediction and evaluation of breast cancer response to NAC; and (3) refine an
OHSU-developed web-based clinical decision support system by developing and incorporating a predictive
model of therapy response that integrates imaging markers with clinical and histopathological data, and
evaluate the system adaptability in clinical workflow.
项目摘要
肿瘤生物学功能的定量成像已经显示出上级于肿瘤大小的成像,
预测和评估癌症对治疗的反应。常规用作非侵入性成像
动态对比增强(DCE)MRI是评估微血管灌注和渗透性的一种方法,
越来越多地用于研究和早期临床试验环境,以测量,重要的是,
肿瘤对治疗的反应。标准的两参数或三参数Tofts模型(TM)是最常见的
通常用于DCE-MRI数据的药代动力学(PK)建模以估计定量成像
生物标志物如Ktranss和ve。然而,TM是次优的,因为它忽略了真实的生理
当定量组织浓度时,组织隔室之间的水交换现象
MRI信号强度。俄勒冈州卫生部开发的快门速度模型(SSM)
与科学大学(OHSU)组是一个更全面的PK模型,考虑到
隔室间水交换动力学。最近的单中心OHSU研究表明上级
SSM DCE-MRI预测和评价乳腺癌治疗反应的能力与
TM.此外,最近发现SSM专用参数τi(平均细胞内水)
是代谢活动的新的成像生物标志物,并且是唯一的基线(治疗前)标志物
预测乳腺癌对新辅助化疗(NAC)的反应和头部和
颈部癌症τi还具有对动脉输入功能的变化显著不敏感的优点
(AIF)常规PK参数。使用优化的数据采集和分析协议,
OHSU小组,本项目的总体目标是验证SSM DCE-MRI作为定量
一项多中心前瞻性研究中评估癌症治疗反应的成像工具
在三个主要的MRI扫描仪平台上,使用NAC治疗乳腺癌作为临床试验,
应用程序.具体而言,我们将(1)实现优化的SSM DCE-MRI数据采集和分析
方案,并在多中心环境中进行QA/QC;(2)进行多中心前瞻性研究,以验证
SSM DCE-MRI用于预测和评价乳腺癌对NAC的反应的实用性;以及(3)改进
OHSU开发的基于网络的临床决策支持系统,通过开发和整合预测
将成像标志物与临床和组织病理学数据相结合的治疗反应模型,以及
评价系统在临床工作流程中的适应性。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evaluation of a Deep Learning Reconstruction for High-Quality T2-Weighted Breast Magnetic Resonance Imaging.
评估高质量T2加权乳腺磁共振成像的深度学习重建。
- DOI:10.3390/tomography9050152
- 发表时间:2023-10-18
- 期刊:
- 影响因子:0
- 作者:Allen TJ;Henze Bancroft LC;Unal O;Estkowski LD;Cashen TA;Korosec F;Strigel RM;Kelcz F;Fowler AM;Gegios A;Thai J;Lebel RM;Holmes JH
- 通讯作者:Holmes JH
Automated Placement of Scan and Pre-Scan Volumes for Breast MRI Using a Convolutional Neural Network.
- DOI:10.3390/tomography9030079
- 发表时间:2023-05-10
- 期刊:
- 影响因子:0
- 作者:Allen TJ;Henze Bancroft LC;Wang K;Wang PN;Unal O;Estkowski LD;Cashen TA;Bayram E;Strigel RM;Holmes JH
- 通讯作者:Holmes JH
An Anthropomorphic Digital Reference Object (DRO) for Simulation and Analysis of Breast DCE MRI Techniques.
- DOI:10.3390/tomography8020081
- 发表时间:2022-04-02
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Statistical considerations for repeatability and reproducibility of quantitative imaging biomarkers.
- DOI:10.1259/bjro.20210083
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Quantitative DCE-MRI prediction of breast cancer recurrence following neoadjuvant chemotherapy: a preliminary study.
新辅助化疗后乳腺癌复发的定量 DCE-MRI 预测:初步研究。
- DOI:10.1186/s12880-022-00908-0
- 发表时间:2022-10-20
- 期刊:
- 影响因子:2.7
- 作者:Thawani, Rajat;Gao, Lina;Mohinani, Ajay;Tudorica, Alina;Li, Xin;Mitri, Zahi;Huang, Wei
- 通讯作者:Huang, Wei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
WEI HUANG其他文献
WEI HUANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('WEI HUANG', 18)}}的其他基金
Multicenter Quantitative MRI Assessment of Breast Cancer Therapy Response
乳腺癌治疗反应的多中心定量 MRI 评估
- 批准号:
10307586 - 财政年份:2020
- 资助金额:
$ 57.89万 - 项目类别:
Shutter-Speed Model DCE-MRI for Assessment of Response to Cancer Therapy
用于评估癌症治疗反应的快门速度模型 DCE-MRI
- 批准号:
8533769 - 财政年份:2011
- 资助金额:
$ 57.89万 - 项目类别:
Shutter-Speed Model DCE-MRI for Assessment of Response to Cancer Therapy
用于评估癌症治疗反应的快门速度模型 DCE-MRI
- 批准号:
8187566 - 财政年份:2011
- 资助金额:
$ 57.89万 - 项目类别:
Shutter-Speed Model DCE-MRI for Assessment of Response to Cancer Therapy
用于评估癌症治疗反应的快门速度模型 DCE-MRI
- 批准号:
8327116 - 财政年份:2011
- 资助金额:
$ 57.89万 - 项目类别:
Shutter-Speed DCE-MRI Discrimination of Benign and Malignant Breast Disease
快门速度 DCE-MRI 乳腺良恶性疾病鉴别
- 批准号:
7682573 - 财政年份:2007
- 资助金额:
$ 57.89万 - 项目类别:
Shutter-Speed DCE-MRI Discrimination of Benign and Malignant Breast Disease
快门速度 DCE-MRI 乳腺良恶性疾病鉴别
- 批准号:
7313975 - 财政年份:2007
- 资助金额:
$ 57.89万 - 项目类别:
Shutter-Speed DCE-MRI Discrimination of Benign and Malignant Breast Disease
快门速度 DCE-MRI 乳腺良恶性疾病鉴别
- 批准号:
7496954 - 财政年份:2007
- 资助金额:
$ 57.89万 - 项目类别:
相似海外基金
3D Engineered Model of Microscopic Colorectal Cancer Liver Metastasis for Adjuvant Chemotherapy Screens
用于辅助化疗筛选的显微结直肠癌肝转移 3D 工程模型
- 批准号:
10556192 - 财政年份:2023
- 资助金额:
$ 57.89万 - 项目类别:
Developing Digital Pathology Biomarkers for Response to Neoadjuvant and Adjuvant Chemotherapy in Breast Cancer
开发数字病理学生物标志物以应对乳腺癌新辅助和辅助化疗
- 批准号:
10315227 - 财政年份:2021
- 资助金额:
$ 57.89万 - 项目类别:
Circulating Tumour DNA Analysis Informing Adjuvant Chemotherapy in Stage III Colorectal Cancer: A Multicentre Phase II/III Randomised Controlled Trial (DYNAMIC-III)
循环肿瘤 DNA 分析为 III 期结直肠癌辅助化疗提供信息:多中心 II/III 期随机对照试验 (DYNAMIC-III)
- 批准号:
443988 - 财政年份:2021
- 资助金额:
$ 57.89万 - 项目类别:
Operating Grants
Establishment of new selection system for adjuvant chemotherapy of colorectal cancer
结直肠癌辅助化疗新选择体系的建立
- 批准号:
20K09011 - 财政年份:2020
- 资助金额:
$ 57.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improved survival by Helicobacter pylori-modulated immunity in gastric cancer patients with adjuvant chemotherapy
幽门螺杆菌调节免疫力可改善接受辅助化疗的胃癌患者的生存率
- 批准号:
19K09130 - 财政年份:2019
- 资助金额:
$ 57.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A new strategy of adjuvant chemotherapy for lung cancer based on the expression of anti-aging gene Klotho
基于抗衰老基因Klotho表达的肺癌辅助化疗新策略
- 批准号:
19K18225 - 财政年份:2019
- 资助金额:
$ 57.89万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Novel candidate factors predicting the effect of S-1 adjuvant chemotherapy of pancreatic cancer
预测胰腺癌S-1辅助化疗效果的新候选因素
- 批准号:
18K16337 - 财政年份:2018
- 资助金额:
$ 57.89万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Project 2-Metabolic Modulation of Myeloid-Derived Suppressor Cells to Increase Efficacy of Neo adjuvant Chemotherapy and Immunotherapy
项目2-骨髓源性抑制细胞的代谢调节以提高新辅助化疗和免疫疗法的疗效
- 批准号:
10005254 - 财政年份:2018
- 资助金额:
$ 57.89万 - 项目类别:
Radiogenomic tools for prediction of breast cancer neo-adjuvant chemotherapy response from pre-treatment MRI
通过治疗前 MRI 预测乳腺癌新辅助化疗反应的放射基因组学工具
- 批准号:
9763320 - 财政年份:2018
- 资助金额:
$ 57.89万 - 项目类别:
Analysis of the molecular mechanism for the prognostic biomarker of adjuvant chemotherapy
辅助化疗预后生物标志物的分子机制分析
- 批准号:
18K07341 - 财政年份:2018
- 资助金额:
$ 57.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)