Subcellular Wireless Axons for in vivo Localized Neuronal Excitation

用于体内局部神经元兴奋的亚细胞无线轴突

基本信息

项目摘要

Project Summary This BRG R01 (PAR-16-242) application aims to greatly improved spatial and temporal resolution: Penetrating electrical stimulation arrays are a crucial component of basic neuroscience research and human neuroprosthetics. A challenge with this technology is achieving a highly localized stimulated area of the same neurons over weeks and months. However, implantation of cortical microelectrodes causes a reactive tissue response, which results in a degradation of the preferred functional performance over time, thus limiting the device capabilities. Current electrical stimulation implants are tethered to the skull, which chronically increases the impact of mechanical mismatch, causes neural degeneration around the implant, increases the chance of infection, increases the chance of mechanical trauma induced failure as well as shifting of the electrode position, and increases in electrical impedances from glial scarring. In turn, the electrical stimulation loses its effectiveness to excite neural tissue, making longevity a challenge. Simply increasing the electrical current to compensate can lead to permenant damage to the tissue and/or the electrode. This proposal proves an innovative strategy that uses leading-edge biocompatible materials to develop innovative “Wireless Axon” electrodes that are ultra-small and untethered, with bioactive surfaces and nanostructured materials for enhanced signal transduction to electrically excitable tissue. The project aims to decouple the mechanical requirements necessary in traditional microstimulation technology and improve spatial selectivity of activated neurons for stable long-term electrical stimulation. The guiding hypothesis is that decoupling the mechanical tether will improve tissue integration, while immobilized biomolecules will effectively intervene with the reactive tissue response as well as improve electrode-neuron signal-coupling and selectivity. This project is likely to make significant contributions through developing advanced neural probes for long- term (permanent), high quality, and selective neural stimulation. These could potentially lead to paradigm shifts in both neuroscience research and clinical neuroprosthetics and neurostimulation through creating the capability of activating specific neurons for long periods of time with great precision. Our guiding hypothesis is that the product of the combined benefit is synergistic and greater than the sum of its parts. The outcomes of this project are also likely to establish new biologically inspired paradigms for creating long-lasting, high-fidelity neural interfaces with biomimetic materials as well as new paradigms for longitudinally probing neural circuits, particularly for the study of learning and plasticity. Several variations of the technology developed in this project is expected to be compatible with optogenetics. This project would impact both the neuroscience research community, and clinical scientists (neurosurgeons, neurologists, and patients) that use and benefit from neuroprosthetic- and neurostimulation-based treatments interventions.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Takashi Daniel Yoshida Kozai其他文献

Parvalbumin interneuron activity induces slow cerebrovascular fluctuations in awake mice
小清蛋白中间神经元活动诱导清醒小鼠脑血管缓慢波动
  • DOI:
    10.1101/2024.06.15.599179
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Rakymzhan;Mitsuhiro Fukuda;Takashi Daniel Yoshida Kozai;Alberto L Vazquez
  • 通讯作者:
    Alberto L Vazquez

Takashi Daniel Yoshida Kozai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Takashi Daniel Yoshida Kozai', 18)}}的其他基金

Modulation of Oligodendrocyte Calcium Activity with ICMS and Melatonin Stimulation
ICMS 和褪黑激素刺激调节少突胶质细胞钙活性
  • 批准号:
    10622191
  • 财政年份:
    2022
  • 资助金额:
    $ 33.12万
  • 项目类别:
Elucidating electrical stimulation induced non-neuronal activity using emerging in vivo imaging technology and electrophysiology
利用新兴的体内成像技术和电生理学阐明电刺激诱导的非神经元活动
  • 批准号:
    10668278
  • 财政年份:
    2020
  • 资助金额:
    $ 33.12万
  • 项目类别:
Elucidating electrical stimulation induced non-neuronal activity using emerging in vivo imaging technology and electrophysiology
利用新兴的体内成像技术和电生理学阐明电刺激诱导的非神经元活动
  • 批准号:
    10599740
  • 财政年份:
    2020
  • 资助金额:
    $ 33.12万
  • 项目类别:
Elucidating electrical stimulation induced non-neuronal activity using emerging in vivo imaging technology and electrophysiology
利用新兴的体内成像技术和电生理学阐明电刺激诱导的非神经元活动
  • 批准号:
    10267211
  • 财政年份:
    2020
  • 资助金额:
    $ 33.12万
  • 项目类别:
2020 Nuroelectronic Interfaces Gordon Research Conference and Gordon Research Seminar
2020年神经电子接口戈登研究会议暨戈登研究研讨会
  • 批准号:
    9913124
  • 财政年份:
    2020
  • 资助金额:
    $ 33.12万
  • 项目类别:
Elucidating electrical stimulation induced non-neuronal activity using emerging in vivo imaging technology and electrophysiology
利用新兴的体内成像技术和电生理学阐明电刺激诱导的非神经元活动
  • 批准号:
    10447133
  • 财政年份:
    2020
  • 资助金额:
    $ 33.12万
  • 项目类别:
Using Electrical Stimulation to Modulation Microglia and the Conversion of Microglia Phenotypes
利用电刺激调节小胶质细胞和小胶质细胞表型的转换
  • 批准号:
    10526723
  • 财政年份:
    2020
  • 资助金额:
    $ 33.12万
  • 项目类别:
Subcellular Wireless Axons for in vivo Localized Neuronal Excitation
用于体内局部神经元兴奋的亚细胞无线轴突
  • 批准号:
    10534746
  • 财政年份:
    2019
  • 资助金额:
    $ 33.12万
  • 项目类别:
Subcellular Wireless Axons for in vivo Localized Neuronal Excitation
用于体内局部神经元兴奋的亚细胞无线轴突
  • 批准号:
    9886359
  • 财政年份:
    2019
  • 资助金额:
    $ 33.12万
  • 项目类别:
Mechanisms behind Electrode Induced BBB damage's impact on neural recording
电极诱导 BBB 损伤对神经记录影响的机制
  • 批准号:
    9760009
  • 财政年份:
    2015
  • 资助金额:
    $ 33.12万
  • 项目类别:

相似国自然基金

层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
  • 批准号:
    2021JJ40433
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
  • 批准号:
    32001603
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
AREA国际经济模型的移植.改进和应用
  • 批准号:
    18870435
  • 批准年份:
    1988
  • 资助金额:
    2.0 万元
  • 项目类别:
    面上项目

相似海外基金

Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
  • 批准号:
    2322614
  • 财政年份:
    2024
  • 资助金额:
    $ 33.12万
  • 项目类别:
    Standard Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
  • 批准号:
    534092360
  • 财政年份:
    2024
  • 资助金额:
    $ 33.12万
  • 项目类别:
    Major Research Instrumentation
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
  • 批准号:
    ES/Z50290X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.12万
  • 项目类别:
    Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
  • 批准号:
    NE/Y003365/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.12万
  • 项目类别:
    Research Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326714
  • 财政年份:
    2024
  • 资助金额:
    $ 33.12万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427233
  • 财政年份:
    2024
  • 资助金额:
    $ 33.12万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326713
  • 财政年份:
    2024
  • 资助金额:
    $ 33.12万
  • 项目类别:
    Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
  • 批准号:
    24K20765
  • 财政年份:
    2024
  • 资助金额:
    $ 33.12万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427232
  • 财政年份:
    2024
  • 资助金额:
    $ 33.12万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427231
  • 财政年份:
    2024
  • 资助金额:
    $ 33.12万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了