Subcellular Wireless Axons for in vivo Localized Neuronal Excitation
用于体内局部神经元兴奋的亚细胞无线轴突
基本信息
- 批准号:10534746
- 负责人:
- 金额:$ 33.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-12-15 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAreaAutopsyAxonBasic ScienceBenchmarkingBiocompatible MaterialsBiomimetic MaterialsBrainBrain InjuriesCarbon NanotubesCerebral cortexChronicCicatrixClinicalCommunitiesCompensationCouplingDataDevicesEffectivenessElectric StimulationElectrodesElectrophysiology (science)EncapsulatedFailureFoundationsFrequenciesGoalsHistologicHumanImmobilizationImmune responseImplantInfectionInflammatory ResponseInterventionLasersLateralLearningLightLongevityMapsMeasuresMechanicsMethodsMicroelectrodesMicrogliaModalityMusNanostructuresNerve DegenerationNeurologistNeuronsNeurosciences ResearchNeurosurgeonOutcomePatientsPenetrationPerformancePhysiologic pulsePopulationPositioning AttributeProbabilityPropertyReactionReporterRisk ReductionSafetyScientistSignal TransductionStructureSumSurfaceSystemTechnologyTestingTimeTissuesTraumaValidationVariantVisualizationWidthbiomaterial compatibilitycell typecraniumdesignelectric impedanceelectrical microstimulationexperienceexperimental studygenetic manipulationheat injuryimplantationimprovedin vivoinnovationlight scatteringmicrostimulationnervous system disorderneuralneural circuitneural implantneural stimulationneuron lossneuroprosthesisneuroregulationneurotransmissionnovelnovel strategiesoptogeneticsresponsesuccesstemporal measurementtoolwireless
项目摘要
Project Summary
This BRG R01 (PAR-16-242) application aims to greatly improved spatial and temporal resolution:
Penetrating electrical stimulation arrays are a crucial component of basic neuroscience research and human
neuroprosthetics. A challenge with this technology is achieving a highly localized stimulated area of the same
neurons over weeks and months. However, implantation of cortical microelectrodes causes a reactive tissue
response, which results in a degradation of the preferred functional performance over time, thus limiting the
device capabilities. Current electrical stimulation implants are tethered to the skull, which chronically increases
the impact of mechanical mismatch, causes neural degeneration around the implant, increases the chance of
infection, increases the chance of mechanical trauma induced failure as well as shifting of the electrode
position, and increases in electrical impedances from glial scarring. In turn, the electrical stimulation loses its
effectiveness to excite neural tissue, making longevity a challenge. Simply increasing the electrical current to
compensate can lead to permenant damage to the tissue and/or the electrode.
This proposal proves an innovative strategy that uses leading-edge biocompatible materials to develop
innovative “Wireless Axon” electrodes that are ultra-small and untethered, with bioactive surfaces and
nanostructured materials for enhanced signal transduction to electrically excitable tissue. The project aims to
decouple the mechanical requirements necessary in traditional microstimulation technology and improve
spatial selectivity of activated neurons for stable long-term electrical stimulation. The guiding hypothesis is that
decoupling the mechanical tether will improve tissue integration, while immobilized biomolecules will effectively
intervene with the reactive tissue response as well as improve electrode-neuron signal-coupling and selectivity.
This project is likely to make significant contributions through developing advanced neural probes for long-
term (permanent), high quality, and selective neural stimulation. These could potentially lead to paradigm shifts
in both neuroscience research and clinical neuroprosthetics and neurostimulation through creating the
capability of activating specific neurons for long periods of time with great precision. Our guiding hypothesis is
that the product of the combined benefit is synergistic and greater than the sum of its parts. The outcomes of
this project are also likely to establish new biologically inspired paradigms for creating long-lasting, high-fidelity
neural interfaces with biomimetic materials as well as new paradigms for longitudinally probing neural circuits,
particularly for the study of learning and plasticity. Several variations of the technology developed in this project
is expected to be compatible with optogenetics. This project would impact both the neuroscience research
community, and clinical scientists (neurosurgeons, neurologists, and patients) that use and benefit from
neuroprosthetic- and neurostimulation-based treatments interventions.
项目摘要
此BRG R01(PAR-16-242)应用程序旨在大幅提高空间和时间分辨率:
穿透性电刺激阵列是基础神经科学研究和人类
神经假体。这项技术的一个挑战是实现高度局部化的相同刺激区域
几个星期和几个月的神经元。然而,植入皮质微电极会引起反应性组织
响应,这会导致首选功能性能随着时间的推移而下降,从而限制
设备功能。目前的电刺激植入物被拴在头骨上,这会慢性增加
机械失配的影响,导致植入物周围的神经退化,增加了
感染,增加了机械创伤导致的故障和电极移位的机会
位置,以及神经胶质瘢痕形成的电阻抗增加。反过来,电刺激失去了它的
有效地刺激神经组织,使长寿成为一个挑战。只需将电流增加到
补偿可能导致对组织和/或电极的永久性损害。
这一提议证明了一种创新战略,即使用尖端的生物兼容材料来开发
创新的“无线轴心”电极,超小且不系绳,具有生物活性表面和
用于增强对电可兴奋组织的信号传导的纳米结构材料。该项目旨在
分离传统微刺激技术中所需的机械要求,并改进
激活神经元对稳定的长期电刺激的空间选择性。指导性假设是
机械系绳的解偶联将改善组织整合,而固定的生物分子将有效
干预反应性组织反应,改善电极-神经元信号耦合和选择性。
这个项目很可能通过开发先进的神经探头来做出重大贡献。
长期(永久性)、高质量和选择性的神经刺激。这些可能会潜在地导致范式转变
在神经科学研究和临床神经假体和神经刺激方面,通过创造
能够以极高的精度长时间激活特定的神经元。我们的指导性假设是
综合效益的乘积是协同的,大于其各部分的总和。其结果是
该项目还可能建立新的生物启发范例,以创建持久、高保真的
神经与仿生材料的接口以及用于纵向探测神经电路的新范例,
尤其是对于学习和可塑性的研究。在这个项目中开发的技术的几个变种
预计将与光遗传学兼容。这个项目将对神经科学研究产生影响
社区和临床科学家(神经外科医生、神经病学家和患者)使用并受益于
基于神经假体和神经刺激的治疗干预。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Takashi Daniel Yoshida Kozai其他文献
Parvalbumin interneuron activity induces slow cerebrovascular fluctuations in awake mice
小清蛋白中间神经元活动诱导清醒小鼠脑血管缓慢波动
- DOI:
10.1101/2024.06.15.599179 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
A. Rakymzhan;Mitsuhiro Fukuda;Takashi Daniel Yoshida Kozai;Alberto L Vazquez - 通讯作者:
Alberto L Vazquez
Takashi Daniel Yoshida Kozai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Takashi Daniel Yoshida Kozai', 18)}}的其他基金
Modulation of Oligodendrocyte Calcium Activity with ICMS and Melatonin Stimulation
ICMS 和褪黑激素刺激调节少突胶质细胞钙活性
- 批准号:
10622191 - 财政年份:2022
- 资助金额:
$ 33.12万 - 项目类别:
Elucidating electrical stimulation induced non-neuronal activity using emerging in vivo imaging technology and electrophysiology
利用新兴的体内成像技术和电生理学阐明电刺激诱导的非神经元活动
- 批准号:
10668278 - 财政年份:2020
- 资助金额:
$ 33.12万 - 项目类别:
Elucidating electrical stimulation induced non-neuronal activity using emerging in vivo imaging technology and electrophysiology
利用新兴的体内成像技术和电生理学阐明电刺激诱导的非神经元活动
- 批准号:
10599740 - 财政年份:2020
- 资助金额:
$ 33.12万 - 项目类别:
Elucidating electrical stimulation induced non-neuronal activity using emerging in vivo imaging technology and electrophysiology
利用新兴的体内成像技术和电生理学阐明电刺激诱导的非神经元活动
- 批准号:
10267211 - 财政年份:2020
- 资助金额:
$ 33.12万 - 项目类别:
2020 Nuroelectronic Interfaces Gordon Research Conference and Gordon Research Seminar
2020年神经电子接口戈登研究会议暨戈登研究研讨会
- 批准号:
9913124 - 财政年份:2020
- 资助金额:
$ 33.12万 - 项目类别:
Elucidating electrical stimulation induced non-neuronal activity using emerging in vivo imaging technology and electrophysiology
利用新兴的体内成像技术和电生理学阐明电刺激诱导的非神经元活动
- 批准号:
10447133 - 财政年份:2020
- 资助金额:
$ 33.12万 - 项目类别:
Using Electrical Stimulation to Modulation Microglia and the Conversion of Microglia Phenotypes
利用电刺激调节小胶质细胞和小胶质细胞表型的转换
- 批准号:
10526723 - 财政年份:2020
- 资助金额:
$ 33.12万 - 项目类别:
Subcellular Wireless Axons for in vivo Localized Neuronal Excitation
用于体内局部神经元兴奋的亚细胞无线轴突
- 批准号:
10307095 - 财政年份:2019
- 资助金额:
$ 33.12万 - 项目类别:
Subcellular Wireless Axons for in vivo Localized Neuronal Excitation
用于体内局部神经元兴奋的亚细胞无线轴突
- 批准号:
9886359 - 财政年份:2019
- 资助金额:
$ 33.12万 - 项目类别:
Mechanisms behind Electrode Induced BBB damage's impact on neural recording
电极诱导 BBB 损伤对神经记录影响的机制
- 批准号:
9760009 - 财政年份:2015
- 资助金额:
$ 33.12万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
- 批准号:
2322614 - 财政年份:2024
- 资助金额:
$ 33.12万 - 项目类别:
Standard Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
- 批准号:
534092360 - 财政年份:2024
- 资助金额:
$ 33.12万 - 项目类别:
Major Research Instrumentation
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
- 批准号:
ES/Z50290X/1 - 财政年份:2024
- 资助金额:
$ 33.12万 - 项目类别:
Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
- 批准号:
NE/Y003365/1 - 财政年份:2024
- 资助金额:
$ 33.12万 - 项目类别:
Research Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 33.12万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 33.12万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 33.12万 - 项目类别:
Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
- 批准号:
24K20765 - 财政年份:2024
- 资助金额:
$ 33.12万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Postdoctoral Fellowship: OPP-PRF: Tracking Long-Term Changes in Lake Area across the Arctic
博士后奖学金:OPP-PRF:追踪北极地区湖泊面积的长期变化
- 批准号:
2317873 - 财政年份:2024
- 资助金额:
$ 33.12万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 33.12万 - 项目类别:
Standard Grant














{{item.name}}会员




