Development of a portable and compact robotic system for frameless and maskless stereotactic radiosurgery

开发用于无框架和无面罩立体定向放射外科的便携式紧凑型机器人系统

基本信息

  • 批准号:
    10307093
  • 负责人:
  • 金额:
    $ 33.22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-12-04 至 2023-11-30
  • 项目状态:
    已结题

项目摘要

ABSTRACT Stereotactic radiosurgery (SRS) is a non-surgical technique used to treat functional abnormalities and small tumors of the brain. It delivers precisely targeted radiation in fewer high dose treatments than traditional therapy and allows access to sites that would otherwise be difficult or inadvisable to treat due to potential surgical complications to nearby nerves, arteries, and other vital structures. To achieve the 1-2mm precision for intracranial SRS, a metal head ring is rigidly fixated to the patient’s skull using screws under local anesthesia, and then bolted to the treatment couch. The discomfort, inconvenience, and invasive nature associated with the frame preparation have been identified as a serious cause of poor patient compliance and poor clinical efficiencies when SRS is medically indicated. For certain patients, with extreme cranial anatomy or prior surgical bone flaps, ring placement is not possible. In addition, the frame prohibits cases when a hypo- fractionated scheduled is desired leading to the use of techniques with far less accuracy. For clinics, with tight patient linear accelerator (LINAC) scheduling, or high patient to LINAC volumes, frame based SRS scheduling can prove to be problematic due to the necessity of performing the CT simulation, treatment planning, LINAC SRS QA, patient setup, and treatment on the same day. Research aimed at eliminating the frame through the use of thermoplastic face masks have resulted in SRS with less accuracy as mask flex can lead to systematic drift of up to 2-3mm away from the intended target due to rotation about the fulcrum at the back of the skull. Additionally, mask based immobilization accuracy is highly dependent on mask manufacturing quality, skill of the person applying the mask, shrinkage of the mask during treatment, and physical changes of the patient’s head due to swelling or weight loss. In certain cases this has led to uncertainties as large as 6 mm and 2.5 degrees. Such accuracies are not suitable for deep tumors located near critical structures such as the brain stem or for newer treatment modalities such as single iso-center multiple target SRS which are highly sensitive to rotational errors. We propose to solve these problems by developing a novel robotic SRS system that does not require a frame or mask. The hypothesis is that the use of real-time 6 degree of freedom (6DOF) patient head motion tracking and active robotic control systems can assist patients in maintaining a stable sub-millimeter sub-degree head position for long periods of time. Specific aims include: (1) To develop an advanced real-time 6DOF trajectory control law. (2) Design and construction of a clinical robotic SRS system using real-time 3D surface image tracking. (3) Anthropomorphic phantom, healthy volunteer and patient clinical trials.
摘要 立体定向放射外科(SRS)是一种用于治疗功能异常和小肿瘤的非手术技术。 脑肿瘤它提供精确的靶向辐射,比传统的高剂量治疗更少 治疗,并允许进入否则由于潜在危险而难以或不建议治疗的部位。 手术并发症对附近的神经、动脉和其他重要结构的影响。达到1- 2 mm的精度 对于颅内SRS,使用螺钉将金属头环牢固固定在患者颅骨上, 然后,她就走了。不适、不便和侵入性 与框架准备相关的问题已被确定为患者依从性差的严重原因, 当SRS有医学指征时,临床效率较差。对于某些患者,具有极端的颅骨解剖结构或 在现有的外科骨瓣移植术中,环的放置是不可能的。此外,该框架还禁止在低血糖情况下, 期望分段调度,这导致使用精度低得多的技术。对于诊所, 患者直线加速器(LINAC)调度,或患者到LINAC的高容量,基于帧的SRS调度 由于必须执行CT模拟、治疗计划、LINAC SRS QA、患者设置和治疗在同一天进行。研究旨在消除框架,通过 使用热塑性面罩导致SRS的准确性较低,因为面罩弯曲可导致系统性 由于绕颅骨后部支点旋转,偏离预期目标2- 3 mm。 另外,基于掩模的固定准确度高度依赖于掩模制造质量、制造技术和制造工艺。 使用面罩的人、治疗期间面罩的收缩以及患者的身体变化 由于肿胀或体重减轻而引起的头部。在某些情况下,这导致不确定性高达6毫米和2.5毫米 度这样的精确度不适用于位于关键结构(如大脑)附近的深部肿瘤 或者用于较新的治疗模式,例如高度敏感的单等中心多靶SRS 旋转误差。 我们建议通过开发一种不需要框架的新型机器人SRS系统来解决这些问题 或面具。假设使用实时6自由度(6DOF)患者头部运动跟踪 主动机器人控制系统可以帮助患者保持稳定的亚毫米亚度头部 长时间的位置。具体目标包括:(1)开发先进的实时六自由度轨迹 控制律(2)基于实时三维表面图像的临床机器人SRS系统的设计与构建 跟踪. (3)拟人体模、健康志愿者和患者临床试验。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rodney Wiersma其他文献

Rodney Wiersma的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rodney Wiersma', 18)}}的其他基金

Project 4: Development and validation of Pencil Beam Scanning methodology for particle FLASH radiotherapy
项目 4:用于粒子闪光放射治疗的笔形束扫描方法的开发和验证
  • 批准号:
    10333801
  • 财政年份:
    2022
  • 资助金额:
    $ 33.22万
  • 项目类别:
Project 4: Development and validation of Pencil Beam Scanning methodology for particle FLASH radiotherapy
项目 4:用于粒子闪光放射治疗的笔形束扫描方法的开发和验证
  • 批准号:
    10573298
  • 财政年份:
    2022
  • 资助金额:
    $ 33.22万
  • 项目类别:
Development of a portable and compact robotic system for frameless and maskless stereotactic radiosurgery
开发用于无框架和无面罩立体定向放射外科的便携式紧凑型机器人系统
  • 批准号:
    10047519
  • 财政年份:
    2018
  • 资助金额:
    $ 33.22万
  • 项目类别:
Development of a portable and compact robotic system for frameless and maskless stereotactic radiosurgery
开发用于无框架和无面罩立体定向放射外科的便携式紧凑型机器人系统
  • 批准号:
    10533318
  • 财政年份:
    2018
  • 资助金额:
    $ 33.22万
  • 项目类别:

相似海外基金

Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
  • 批准号:
    22K13777
  • 财政年份:
    2022
  • 资助金额:
    $ 33.22万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
  • 批准号:
    10045111
  • 财政年份:
    2022
  • 资助金额:
    $ 33.22万
  • 项目类别:
    Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
  • 批准号:
    2749141
  • 财政年份:
    2022
  • 资助金额:
    $ 33.22万
  • 项目类别:
    Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
  • 批准号:
    548945-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 33.22万
  • 项目类别:
    College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
  • 批准号:
    548945-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 33.22万
  • 项目类别:
    College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
  • 批准号:
    10801667
  • 财政年份:
    2019
  • 资助金额:
    $ 33.22万
  • 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
  • 批准号:
    1738138
  • 财政年份:
    2017
  • 资助金额:
    $ 33.22万
  • 项目类别:
    Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
  • 批准号:
    17K18852
  • 财政年份:
    2017
  • 资助金额:
    $ 33.22万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
  • 批准号:
    1612567
  • 财政年份:
    2016
  • 资助金额:
    $ 33.22万
  • 项目类别:
    Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
  • 批准号:
    1621732
  • 财政年份:
    2016
  • 资助金额:
    $ 33.22万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了