Waking up the nervous system: Molecular characterization of neuronal leader cells and their role in brain development
唤醒神经系统:神经元领导细胞的分子特征及其在大脑发育中的作用
基本信息
- 批准号:10315708
- 负责人:
- 金额:$ 7.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAtlasesBioinformaticsBiologyBrainCRISPR screenCalciumCell Differentiation processCell NucleusCell ProliferationCellsCommunitiesComplexDataDevelopmentDevelopmental ProcessDisciplineDistributional ActivityDrug or chemical Tissue DistributionEmbryoEmbryonic DevelopmentFluorescence MicroscopyGap JunctionsGene ExpressionGene Expression ProfileGenesGeneticGenetic TranscriptionGenomicsHealthHumanIn VitroLabelLearningLightLinkMapsMediatingMentorsMethodsMolecularMolecular ProfilingMotorMotor NeuronsNatureNervous system structureNeuraxisNeurogliaNeurologicNeuronal DifferentiationNeuronsOutcomePatientsPopulation DynamicsProblem SolvingProcessProtocols documentationRegulator GenesReporterResolutionRoleShapesSignal PathwaySmall Nuclear RNATechniquesTimeTissue EngineeringTissuesTransgenic OrganismsWorkZebrafishaxon growthcell typecomputerized toolsembryo cellexperimental studyhuman modelin vivoinduced pluripotent stem cellinhibitor/antagonistinsightinterestnervous system disorderneuropsychiatric disorderneuropsychiatryneurotransmissionnew technologyoptogeneticsprogramssensorsingle-cell RNA sequencingstem cell biologystem cell therapysuccesssynaptogenesistranscriptome sequencingtranscriptomics
项目摘要
Project Summary/Abstract
Learning how spontaneous neuronal activity shapes embryonic brain development is critical for understanding
neurodevelopmental processes, with implications in neurological or neuropsychiatric disorders. Early sporadic
activity is essential for the formation of mature correlated neuronal networks. To date, we have had success in
identifying the motor circuit as the first circuit to function in a developing zebrafish embryo. In addition, a few
neurons, the “leader cells”, are the first neurons to obtain spontaneous neuronal activity. This spontaneous
activity is followed by the formation of small synchronized neuronal networks that elaborate into complex circuits
as development progresses. However, due to their sparsity and transient nature, molecular characterization of
leader cells has been a challenge. This proposal aims to combine zebrafish genetics with powerful new methods
for single-cell transcriptomic profiling to deliver a high-resolution map of activity-dependent development and to
use it to identify activity-dependent gene programs in a cell-type specific manner and profile leader cells. The
proposal focuses on integrating new technologies into discovering how the embryonic vertebrate brain develops
in an activity-dependent manner. The aims are to perform comprehensive molecular profiling of the leader cells
as they acquire spontaneous activity in the developing vertebrate nervous system, identify potential genetic
regulators (Aim 1), and assess how perturbations to leader cell activity shape circuit maturation and brain
development (Aim 2). The proposed work leverages recent developments from several disciplines: single-cell
RNA sequencing (scRNA-seq), zebrafish genetics, and optogenetics. Specifically assessing how the brain
develops during health and when the motor circuit, the first circuit to function in the zebrafish nervous system, is
disrupted. The ideal setting to carry out this proposal is with the co-mentoring of Dr. Wagner, who developed
TRACERSEQ and STITCH to map the quantitative relationship between cell states and lineages in healthy and
perturbed contexts using quantitative biology techniques and Dr. Kriegstein, an expert in development,
genomics, and stem cell biology. Overall, these studies will lead to general insights into how transcriptional
profiles of neuronal and non-neuronal cells coordinate to create a healthy brain with proper cell proliferation and
differentiation in an activity-dependent manner.
项目总结/摘要
了解自发神经元活动如何塑造胚胎大脑发育对于理解
神经发育过程,涉及神经系统或神经精神障碍。早期散发
活性对于成熟相关神经元网络的形成是必不可少的。到目前为止,我们已经成功地
将所述运动回路识别为在发育中的斑马鱼胚胎中起作用的第一回路。此外,一些
神经元,即“领导细胞”,是获得自发神经元活动的第一批神经元。这种自发
活动之后是小型同步神经元网络的形成,
随着发展的进步。然而,由于它们的稀疏性和瞬时性,
领导细胞是一个挑战。这项提议旨在将联合收割机斑马鱼遗传学与强大的新方法相结合
用于单细胞转录组学分析,以提供活动依赖性发育的高分辨率图谱,
用它以细胞类型特异性的方式鉴定活性依赖性基因程序,并分析前导细胞。的
一项提案的重点是将新技术整合到发现胚胎脊椎动物大脑如何发育中
以依赖于活动的方式。其目的是对领导细胞进行全面的分子分析,
当它们在发育中的脊椎动物神经系统中获得自发活动时,
调节器(目标1),并评估如何扰动领导细胞活动形状电路成熟和大脑
发展(目标2)。拟议的工作利用了几个学科的最新发展:单细胞
RNA测序(scRNA-seq)、斑马鱼遗传学和光遗传学。特别是评估大脑是如何
当运动回路,第一个在斑马鱼神经系统中起作用的回路,
被打乱了执行此建议的理想环境是与瓦格纳博士共同指导,他开发了
TRACERSEQ和STITCH,以绘制健康和非健康人群中细胞状态和谱系之间的定量关系,
使用定量生物学技术和Kriegstein博士,一位发展专家,
基因组学和干细胞生物学。总的来说,这些研究将导致对转录如何
神经元和非神经元细胞的分布协调以产生具有适当细胞增殖的健康脑,
以活动依赖的方式分化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicole Ann Aponte-Santiago其他文献
Nicole Ann Aponte-Santiago的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
BrainMaps - a unified web platform for novel model organism brain atlases
BrainMaps - 新型模型生物脑图谱的统一网络平台
- 批准号:
23KF0076 - 财政年份:2023
- 资助金额:
$ 7.51万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Sexual dimorphic cell type and connectivity atlases of the aging and AD mouse brains
衰老和 AD 小鼠大脑的性二态性细胞类型和连接图谱
- 批准号:
10740308 - 财政年份:2023
- 资助金额:
$ 7.51万 - 项目类别:
Pre-cancer atlases of cutaneous and hematologic origin (PATCH Center)
皮肤和血液来源的癌前图谱(PATCH 中心)
- 批准号:
10818803 - 财政年份:2023
- 资助金额:
$ 7.51万 - 项目类别:
Multi-modal cell type atlases of somatosensory spinal cord neurons
体感脊髓神经元多模态细胞类型图谱
- 批准号:
10743857 - 财政年份:2022
- 资助金额:
$ 7.51万 - 项目类别:
Ultra-high Resolution Structural Connectome Atlases of the Animal Brain and their Associated Toolbox
动物大脑的超高分辨率结构连接图谱及其相关工具箱
- 批准号:
10558629 - 财政年份:2022
- 资助金额:
$ 7.51万 - 项目类别:
Multi-modal cell type atlases of somatosensory spinal cord neurons
体感脊髓神经元多模态细胞类型图谱
- 批准号:
10508739 - 财政年份:2022
- 资助金额:
$ 7.51万 - 项目类别:
Atlases and statistical modeling of vascular networks from medical images
医学图像血管网络的图谱和统计建模
- 批准号:
RGPIN-2018-05283 - 财政年份:2022
- 资助金额:
$ 7.51万 - 项目类别:
Discovery Grants Program - Individual
Modularly built, complete, coordinate- and template-free brain atlases
模块化构建、完整、无坐标和模板的大脑图谱
- 批准号:
10570256 - 财政年份:2022
- 资助金额:
$ 7.51万 - 项目类别:
Ultra-high Resolution Structural Connectome Atlases of the Animal Brain and their Associated Toolbox
动物大脑的超高分辨率结构连接图谱及其相关工具箱
- 批准号:
10364874 - 财政年份:2022
- 资助金额:
$ 7.51万 - 项目类别:
Modularly built, complete, coordinate- and template-free brain atlases
模块化构建、完整、无坐标和模板的大脑图谱
- 批准号:
10467697 - 财政年份:2022
- 资助金额:
$ 7.51万 - 项目类别: