Ovarian Cancer Detection with Blood- and Imaging-Based Biomarkers
使用基于血液和成像的生物标志物检测卵巢癌
基本信息
- 批准号:10314537
- 负责人:
- 金额:$ 81.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsBilateralBiological MarkersBlindedBloodBlood ProteinsBlood ScreeningBlood TestsBlood specimenCA-125 AntigenCancer EtiologyCancerousCarcinomaCarcinoma in SituCellsCessation of lifeClinicalCollectionDataDetectionDevelopmentDiagnosisDiseaseEarly Detection Research NetworkEarly DiagnosisEndoscopesEndoscopyEpithelialEpithelial CellsEpithelial ovarian cancerFamilyFertilityGeneticGoalsGoldGreater sac of peritoneumHealthHigh Risk WomanHistologyHumanHysterectomyImageImage AnalysisImaging TechniquesInstructionLeadLesionMalignant NeoplasmsMalignant neoplasm of ovaryMammalian OviductsMetastatic Malignant Neoplasm to the OvaryMethodsMorbidity - disease rateNeoplasm MetastasisOperative Surgical ProceduresOvarianOvarian Serous AdenocarcinomaOvaryPatientsPilot ProjectsPredictive ValueProceduresProteomicsRecording of previous eventsResearchResolutionRiskSalpingo-OophorectomySamplingScreening for Ovarian CancerSensitivity and SpecificitySerousSerumSerum MarkersSerum ProteinsSurvival RateSymptomsSystemTarget PopulationsTechniquesTechnologyTest ResultTestingThinnessTimeTissuesTransvaginal UltrasoundTubeWomanWorkbaseblood-based biomarkercell preparationclassification algorithmclinically actionablefluorescence imaginghigh resolution imagingimaging biomarkerimprovedin vitro Modelin vivominiaturizeminimally invasivemortalityoptical imagingpremalignantprotein biomarkersprototypescreening
项目摘要
A central problem in ovarian cancer is late diagnosis, which causes the 5-year survival rate to plummet
below 50%. Ovarian cancer symptoms are vague and nonspecific, and current screening is generally not
effective. Because ovarian cancer is so deadly, risk-reducing salpingo-oophorectomy (RRSO) is often
recommended for women at high risk; however, RRSO has fertility and health consequences. It is now
believed that ovarian high-grade serous carcinoma (HGSC) may begin in the fallopian tubes (FTs) as serous
tubal intraepithelial carcinoma (STIC), and that precancerous changes are detectable before metastasis to the
ovary and peritoneal cavity occurs. Our preliminary data indicate that there are significant changes in serum
protein biomarkers in HGSC cases 12-84 months prior to diagnosis. Further, we have also shown that changes
occur in multispectral fluorescence image markers of normal and cancerous ovaries and FTs, and that we can
build a thin falloposcope suitable for traversing the uterus and FT for imaging and cell collection.
We will address the unmet clinical need for a minimally invasive test for STIC and early (stage I/II) ovarian
cancer. Currently, no methods enable the detection of ovarian HGSC with a lead time of more than 12 months.
Overall, our work will meet the need to detect aggressive cancers at the earliest possible stage. Our initial
target population is women at high risk for ovarian cancer who wish to delay or avoid RRSO. We will combine
blood screening for protein markers with a minimally invasive falloposcopy for optical imaging and FT cell
collection. Our procedure will be tested in a study of women at high risk undergoing bilateral salpingo-
oophorectomy with hysterectomy, which will enable us to obtain and compare test results to gold standard
histology. The specific aims are to:
1) Develop and validate biomarkers that detect STIC and early epithelial ovarian cancer. We will improve
upon our existing cut-off based algorithm with newly-discovered markers as well develop a velocity-based
biomarker algorithm. The algorithm that detects disease 12-84 months prior to diagnosis will be confirmed in
an independent, blinded set of clinical blood samples.
2) Develop endoscopic imaging and pathomics markers. We will improve our prototype falloposcope
system with higher resolution multispectral imaging and improved cell collection ability. We will develop
imaging and karyometric markers from the FT images and the cells collected, and perform a pilot in vivo study.
3) Develop an actionable clinical strategy for early detection of epithelial ovarian cancer. A study will be
performed in women at high risk who are planning a RRSO. Those who test positive from our blood test
developed in Specific Aim 1 will have their tissue undergo a falloposcopy. Imaging and pathomics data will be
used to develop a classifier, which will be compared to gold standard histology findings of normal FT, STIC, or
occult HGSC.
卵巢癌的一个中心问题是诊断晚,这导致5年生存率直线下降
低于50%。卵巢癌的症状是模糊的和非特异性的,目前的筛查一般不
有效由于卵巢癌是如此致命,降低风险的输卵管卵巢切除术(RRSO)往往是
建议高危妇女使用;然而,RRSO会对生育和健康产生影响。现在
认为卵巢高级别浆液性癌(HGSC)可能开始于输卵管(FT),
输卵管上皮内癌(STIC),癌前病变是可检测的转移到
卵巢和腹膜腔发生。我们的初步数据表明,血清中有显着的变化,
HGSC病例中的蛋白质生物标志物在诊断前12-84个月。此外,我们还表明,
发生在正常和癌性卵巢和FT的多光谱荧光图像标记中,我们可以
建立一个薄的输卵管镜适合穿越子宫和FT成像和细胞收集。
我们将解决STIC和早期(I/II期)卵巢癌的微创检测未满足的临床需求。
癌目前,没有方法能够检测提前时间超过12个月的卵巢HGSC。
总的来说,我们的工作将满足在尽可能早的阶段检测侵袭性癌症的需要。我们最初
目标人群是希望延迟或避免RRSO的卵巢癌高危女性。我们将联合收割机
使用微创输卵管镜进行光学成像和FT细胞的蛋白质标记物血液筛查
收藏.我们的手术将在一项对接受双侧输卵管切除术的高危妇女的研究中进行测试-
卵巢切除术和子宫切除术,这将使我们能够获得并比较测试结果与金标准
组织学具体目标是:
1)开发和验证检测STIC和早期上皮性卵巢癌的生物标志物。完善
在我们现有的基于截断的算法与新发现的标记,以及开发一个基于速度
生物标记算法在诊断前12-84个月检测疾病的算法将在
一组独立的盲态临床血液样本。
2)开发内窥镜成像和病理学标记。我们将改进我们的原型falloposcope
系统具有更高的分辨率多光谱成像和改进的细胞收集能力。我们将开发
来自FT图像和收集的细胞的成像和核型标记,并进行初步体内研究。
3)制定一个可行的临床策略,早期发现上皮性卵巢癌。一项研究将
在计划RRSO的高风险女性中进行。那些在我们的血液测试中呈阳性的人
在特定目标1中开发的将使他们的组织经历输卵管镜检查。成像和病理组学数据将
用于开发分类器,该分类器将与正常FT、STIC或
隐匿性HGSC
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer Kehlet Barton其他文献
Jennifer Kehlet Barton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer Kehlet Barton', 18)}}的其他基金
Ovarian Cancer Detection with Blood- and Imaging-Based Biomarkers
使用基于血液和成像的生物标志物检测卵巢癌
- 批准号:
10598251 - 财政年份:2022
- 资助金额:
$ 81.19万 - 项目类别:
Ovarian Cancer Detection with Blood- and Imaging-Based Biomarkers
使用基于血液和成像的生物标志物检测卵巢癌
- 批准号:
10737827 - 财政年份:2022
- 资助金额:
$ 81.19万 - 项目类别:
Ovarian Cancer Detection with Blood- and Imaging-Based Biomarkers
使用基于血液和成像的生物标志物检测卵巢癌
- 批准号:
10544781 - 财政年份:2022
- 资助金额:
$ 81.19万 - 项目类别:
Advanced Salpingoscope for Minimally-Invasive Imaging of the Fallopian Tubes
用于输卵管微创成像的先进输卵管镜
- 批准号:
9754821 - 财政年份:2016
- 资助金额:
$ 81.19万 - 项目类别:
Advanced Salpingoscope for Minimally-Invasive Imaging of the Fallopian Tubes
用于输卵管微创成像的先进输卵管镜
- 批准号:
9352340 - 财政年份:2016
- 资助金额:
$ 81.19万 - 项目类别:
Advanced Salpingoscope for Minimally-Invasive Imaging of the Fallopian Tubes
用于输卵管微创成像的先进输卵管镜
- 批准号:
9175237 - 财政年份:2016
- 资助金额:
$ 81.19万 - 项目类别:
Validating a mouse model of ovarian cancer for early detection through imaging
验证卵巢癌小鼠模型以通过成像进行早期检测
- 批准号:
8902450 - 财政年份:2015
- 资助金额:
$ 81.19万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 81.19万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 81.19万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 81.19万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 81.19万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 81.19万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 81.19万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 81.19万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 81.19万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 81.19万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 81.19万 - 项目类别:
Research Grant














{{item.name}}会员




