Ovarian Cancer Detection with Blood- and Imaging-Based Biomarkers

使用基于血液和成像的生物标志物检测卵巢癌

基本信息

  • 批准号:
    10314537
  • 负责人:
  • 金额:
    $ 81.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-01-01 至 2026-12-31
  • 项目状态:
    未结题

项目摘要

A central problem in ovarian cancer is late diagnosis, which causes the 5-year survival rate to plummet below 50%. Ovarian cancer symptoms are vague and nonspecific, and current screening is generally not effective. Because ovarian cancer is so deadly, risk-reducing salpingo-oophorectomy (RRSO) is often recommended for women at high risk; however, RRSO has fertility and health consequences. It is now believed that ovarian high-grade serous carcinoma (HGSC) may begin in the fallopian tubes (FTs) as serous tubal intraepithelial carcinoma (STIC), and that precancerous changes are detectable before metastasis to the ovary and peritoneal cavity occurs. Our preliminary data indicate that there are significant changes in serum protein biomarkers in HGSC cases 12-84 months prior to diagnosis. Further, we have also shown that changes occur in multispectral fluorescence image markers of normal and cancerous ovaries and FTs, and that we can build a thin falloposcope suitable for traversing the uterus and FT for imaging and cell collection. We will address the unmet clinical need for a minimally invasive test for STIC and early (stage I/II) ovarian cancer. Currently, no methods enable the detection of ovarian HGSC with a lead time of more than 12 months. Overall, our work will meet the need to detect aggressive cancers at the earliest possible stage. Our initial target population is women at high risk for ovarian cancer who wish to delay or avoid RRSO. We will combine blood screening for protein markers with a minimally invasive falloposcopy for optical imaging and FT cell collection. Our procedure will be tested in a study of women at high risk undergoing bilateral salpingo- oophorectomy with hysterectomy, which will enable us to obtain and compare test results to gold standard histology. The specific aims are to: 1) Develop and validate biomarkers that detect STIC and early epithelial ovarian cancer. We will improve upon our existing cut-off based algorithm with newly-discovered markers as well develop a velocity-based biomarker algorithm. The algorithm that detects disease 12-84 months prior to diagnosis will be confirmed in an independent, blinded set of clinical blood samples. 2) Develop endoscopic imaging and pathomics markers. We will improve our prototype falloposcope system with higher resolution multispectral imaging and improved cell collection ability. We will develop imaging and karyometric markers from the FT images and the cells collected, and perform a pilot in vivo study. 3) Develop an actionable clinical strategy for early detection of epithelial ovarian cancer. A study will be performed in women at high risk who are planning a RRSO. Those who test positive from our blood test developed in Specific Aim 1 will have their tissue undergo a falloposcopy. Imaging and pathomics data will be used to develop a classifier, which will be compared to gold standard histology findings of normal FT, STIC, or occult HGSC.
卵巢癌的一个中心问题是晚期诊断,这导致5年生存率急剧下降

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jennifer Kehlet Barton其他文献

Jennifer Kehlet Barton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jennifer Kehlet Barton', 18)}}的其他基金

Ovarian Cancer Detection with Blood- and Imaging-Based Biomarkers
使用基于血液和成像的生物标志物检测卵巢癌
  • 批准号:
    10598251
  • 财政年份:
    2022
  • 资助金额:
    $ 81.19万
  • 项目类别:
Ovarian Cancer Detection with Blood- and Imaging-Based Biomarkers
使用基于血液和成像的生物标志物检测卵巢癌
  • 批准号:
    10737827
  • 财政年份:
    2022
  • 资助金额:
    $ 81.19万
  • 项目类别:
Ovarian Cancer Detection with Blood- and Imaging-Based Biomarkers
使用基于血液和成像的生物标志物检测卵巢癌
  • 批准号:
    10544781
  • 财政年份:
    2022
  • 资助金额:
    $ 81.19万
  • 项目类别:
Program 2: Cancer Imaging Program (CIP)
项目 2:癌症影像项目 (CIP)
  • 批准号:
    9315739
  • 财政年份:
    2017
  • 资助金额:
    $ 81.19万
  • 项目类别:
Advanced Salpingoscope for Minimally-Invasive Imaging of the Fallopian Tubes
用于输卵管微创成像的先进输卵管镜
  • 批准号:
    9754821
  • 财政年份:
    2016
  • 资助金额:
    $ 81.19万
  • 项目类别:
Advanced Salpingoscope for Minimally-Invasive Imaging of the Fallopian Tubes
用于输卵管微创成像的先进输卵管镜
  • 批准号:
    9352340
  • 财政年份:
    2016
  • 资助金额:
    $ 81.19万
  • 项目类别:
Advanced Salpingoscope for Minimally-Invasive Imaging of the Fallopian Tubes
用于输卵管微创成像的先进输卵管镜
  • 批准号:
    9175237
  • 财政年份:
    2016
  • 资助金额:
    $ 81.19万
  • 项目类别:
Validating a mouse model of ovarian cancer for early detection through imaging
验证卵巢癌小鼠模型以通过成像进行早期检测
  • 批准号:
    8902450
  • 财政年份:
    2015
  • 资助金额:
    $ 81.19万
  • 项目类别:
Team-Based Design of Biomedical Devices
生物医学设备的团队设计
  • 批准号:
    8233281
  • 财政年份:
    2011
  • 资助金额:
    $ 81.19万
  • 项目类别:
Team-Based Design of Biomedical Devices
生物医学设备的团队设计
  • 批准号:
    8528584
  • 财政年份:
    2011
  • 资助金额:
    $ 81.19万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 81.19万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 81.19万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 81.19万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 81.19万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 81.19万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 81.19万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 81.19万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 81.19万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 81.19万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 81.19万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了