Developing computational algorithms for histopathological image analysis
开发组织病理学图像分析的计算算法
基本信息
- 批准号:10314050
- 负责人:
- 金额:$ 41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:Algorithmic SoftwareAlgorithmsArchitectureBayesian MethodBiologicalBiologyBiomedical ResearchCell CommunicationCellsClassificationClinicalClinical PathologyCommunicable DiseasesCommunitiesComplexComputational algorithmComputer ModelsComputing MethodologiesDataDiagnosisDiseaseDisease ProgressionEvaluationExtracellular MatrixGenomicsGoalsHematoxylin and Eosin Staining MethodHeterogeneityHistologicHistopathologyImageImage AnalysisImaging technologyIntuitionLiver diseasesMachine LearningMalignant NeoplasmsMethodsMicroscopeModelingMolecularMolecular ProfilingMorphologyNetwork-basedPathologicPathologistPathologyPatient CarePatientsPatternPhysicsProceduresResearchResolutionRisk AssessmentScanningSlideSpatial DistributionStainsStatistical ModelsStructureTextureTissue imagingTissuesbasecancer typecell typeclinical applicationclinical caredata integrationdata modelingdeep learning algorithmdigitaldigital pathologydisease diagnosisdisease prognosisdisorder riskdrug discoveryexperiencegraph neural networkimprovedinsightmachine learning methodmolecular pathologymultiple datasetsnoveloutcome predictionparticlepathology imagingpredictive modelingsoftware developmentuser friendly softwarewhole slide imaging
项目摘要
Project Summary
Histopathology is the cornerstone of disease diagnosis and prognosis. With the advance of imaging
technology, whole-slide image (WSI) scanning of tissue slides is becoming a routine clinical procedure and
producing a massive amount of data that captures histopathological details in high resolution. Most current
pathological image analysis methods, similar to general image analysis approaches, mainly focus on morphology
features, such as tissue texture and granularity, but ignore the complex hierarchical structures of tissues. Cells
are the fundamental building blocks to tissues. Different types of cells are first organized into cellular
components, which together with the extracellular matrix, form different types of tissue architectures.
Understanding the interactions among these different types of cells can provide critical insights into biology and
disease status. However, there are some major computational challenges: (1) How to identify and classify
different types of cells in tissue, (2) how to characterize the highly complex and heterogeneous spatial
organization of tissue, and (3) how to integrate histopathology data with other types of data to study disease
status and progression. The goal of this proposal is to develop novel computational methods to analyze
histopathology image data to study disease status and progression. In order to achieve this goal, we have built
a strong research team with complementary expertise in image analysis, machine learning, statistical modeling,
and clinical pathology. Specifically, we will develop novel algorithms to: (1) classify different types of cells from
histopathology tissue WSI scans, (2) characterize and quantify cell spatial distribution and cell-cell interactions,
and (3) integrate histopathology data with other types data to study disease progression. All proposed methods
were motivated by real-world biological and clinical applications across different types of diseases, such as liver
diseases, infectious diseases, and cancer. If implemented successfully, the proposed study will facilitate the
analysis and modeling of data generated from histopathology tissue slides to improve disease risk assessment,
diagnosis, and outcome prediction.
项目摘要
组织病理学是疾病诊断和预后的基石。随着成像技术的进步
技术,组织切片的全幻灯片图像(WSI)扫描正在成为一种常规的临床程序和
产生海量数据,以高分辨率捕捉组织病理学细节。最新版本
病理图像分析方法类似于一般的图像分析方法,主要侧重于形态学
特征,如组织的纹理和粒度,但忽略了组织的复杂的等级结构。单元格
是构成组织的基本构件。不同类型的细胞首先被组织成细胞
这些成分与细胞外基质一起形成了不同类型的组织结构。
了解这些不同类型的细胞之间的相互作用可以提供对生物学和
疾病状况。然而,存在一些主要的计算挑战:(1)如何识别和分类
组织中不同类型的细胞,(2)如何表征高度复杂和异质的空间
组织的组织,以及(3)如何将组织病理学数据与其他类型的数据相结合来研究疾病
现状和进展。这项提议的目标是开发新的计算方法来分析
用于研究疾病状态和进展的组织病理学图像数据。为了实现这一目标,我们已经建立了
一个强大的研究团队,在图像分析、机器学习、统计建模、
和临床病理学。具体地说,我们将开发新的算法来:(1)将不同类型的细胞从
组织病理学组织WSI扫描,(2)表征和量化细胞空间分布和细胞-细胞相互作用,
(3)将组织病理学数据与其他类型的数据相结合,以研究疾病进展。所有建议的方法
受到不同类型疾病(如肝脏)的实际生物和临床应用的推动
疾病、传染病和癌症。如果实施成功,拟议的研究将有助于
对从组织病理学组织载片产生的数据进行分析和建模以改进疾病风险评估,
诊断和结果预测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guanghua Xiao其他文献
Guanghua Xiao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guanghua Xiao', 18)}}的其他基金
Informatics Tools To Analyze And Model Whole Slide Image Data At The Single Cell Level
在单细胞水平上分析和建模整个幻灯片图像数据的信息学工具
- 批准号:
10594240 - 财政年份:2021
- 资助金额:
$ 41万 - 项目类别:
Developing novel algorithms for spatial molecular profiling technologies
开发空间分子分析技术的新算法
- 批准号:
10197672 - 财政年份:2021
- 资助金额:
$ 41万 - 项目类别:
Developing novel algorithms for spatial molecular profiling technologies
开发空间分子分析技术的新算法
- 批准号:
10457848 - 财政年份:2021
- 资助金额:
$ 41万 - 项目类别:
Informatics Tools To Analyze And Model Whole Slide Image Data At The Single Cell Level
在单细胞水平上分析和建模整个幻灯片图像数据的信息学工具
- 批准号:
10681472 - 财政年份:2021
- 资助金额:
$ 41万 - 项目类别:
Informatics Tools To Analyze And Model Whole Slide Image Data At The Single Cell Level
在单细胞水平上分析和建模整个幻灯片图像数据的信息学工具
- 批准号:
10304819 - 财政年份:2021
- 资助金额:
$ 41万 - 项目类别:
Developing computational algorithms for histopathological image analysis
开发组织病理学图像分析的计算算法
- 批准号:
10552537 - 财政年份:2021
- 资助金额:
$ 41万 - 项目类别:
Informatics Tools To Analyze And Model Whole Slide Image Data At The Single Cell Level
在单细胞水平上分析和建模整个幻灯片图像数据的信息学工具
- 批准号:
10677280 - 财政年份:2021
- 资助金额:
$ 41万 - 项目类别:
Developing computational algorithms for histopathological image analysis
开发组织病理学图像分析的计算算法
- 批准号:
10097119 - 财政年份:2021
- 资助金额:
$ 41万 - 项目类别:
Developing novel algorithms for spatial molecular profiling technologies
开发空间分子分析技术的新算法
- 批准号:
10625500 - 财政年份:2021
- 资助金额:
$ 41万 - 项目类别:
Integrative Analysis to Identify Therapeutic Targets for Lung Cancer
综合分析确定肺癌治疗靶点
- 批准号:
8631669 - 财政年份:2013
- 资助金额:
$ 41万 - 项目类别:
相似海外基金
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 41万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221742 - 财政年份:2022
- 资助金额:
$ 41万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221741 - 财政年份:2022
- 资助金额:
$ 41万 - 项目类别:
Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
- 批准号:
533529-2018 - 财政年份:2020
- 资助金额:
$ 41万 - 项目类别:
Collaborative Research and Development Grants
OAC Core: Small: Architecture and Network-aware Partitioning Algorithms for Scalable PDE Solvers
OAC 核心:小型:可扩展 PDE 求解器的架构和网络感知分区算法
- 批准号:
2008772 - 财政年份:2020
- 资助金额:
$ 41万 - 项目类别:
Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
- 批准号:
533529-2018 - 财政年份:2019
- 资助金额:
$ 41万 - 项目类别:
Collaborative Research and Development Grants
Visualization of FPGA CAD Algorithms and Target Architecture
FPGA CAD 算法和目标架构的可视化
- 批准号:
541812-2019 - 财政年份:2019
- 资助金额:
$ 41万 - 项目类别:
University Undergraduate Student Research Awards
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759836 - 财政年份:2018
- 资助金额:
$ 41万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759796 - 财政年份:2018
- 资助金额:
$ 41万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759807 - 财政年份:2018
- 资助金额:
$ 41万 - 项目类别:
Standard Grant