Informatics Tools To Analyze And Model Whole Slide Image Data At The Single Cell Level
在单细胞水平上分析和建模整个幻灯片图像数据的信息学工具
基本信息
- 批准号:10681472
- 负责人:
- 金额:$ 38.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:Advanced Malignant NeoplasmAlgorithmsBiologicalCancer BiologyCell NucleusCell modelCellsClassificationClinicalCollaborationsColorCommunitiesComplexComputational algorithmComputer ModelsComputing MethodologiesDataData AnalysesData SetDevelopmentDiagnosisEnhancersEnsureEventFeedbackGenomicsGoalsHematoxylin and Eosin Staining MethodHistologicImageImage AnalysisImaging technologyImmuneImmunofluorescence ImmunologicImmunohistochemistryInformaticsInfrastructureMachine LearningMalignant NeoplasmsMethodsModelingMolecularMolecular ProfilingMorphologyNon-MalignantOncologistOutcomePathologistPathologyPatternProceduresProcessResearchResolutionRisk AssessmentRunningScanningSecuritySlideStainsStandardizationStromal CellsSurgeonTechnologyTissue imagingTissuesTumor TissueVariantVisualizationVisualization softwarealgorithm developmentanticancer researchcancer cellcancer riskcancer typecell typeclassification algorithmclinical applicationcommunity engagementcomputer infrastructurecomputerized toolsdata integrationdata managementdeep learningdeep learning algorithmdesigndigitaldigital pathologyexperienceimprovedinformatics toolinsightnoveloutcome predictionrestorationsoftware developmenttooltool developmenttumortumor microenvironmentusabilityuser-friendlyweb serviceswhole slide imaging
项目摘要
Project Summary
Digital scanning of tissue slides, including both hematoxylin and eosin (H&E)-stained and
immunohistochemistry (IHC)-stained slides, is becoming a routine clinical procedure. Technological advances
in imaging, computing and molecular profiling have enabled in-depth tissue characterization at single-cell
resolution while retaining the cell spatial information and its histological context. The confluence of these
developments has created unprecedented opportunities for studying the relationships among tumor morphology,
molecular events, and clinical outcomes. However, there is a lack of computational tools that can fully utilize the
comprehensive information in tissue images at the single-cell level. The overarching goal of this proposal is to
develop iSEE-Cell (image-based Spatial pattern ExplorEr for Cells), a suite of informatics tools to enable image
data analysis, spatial modeling and data integration at single-cell resolution. In order to achieve this goal, we
have built a strong research team with complementary expertise in image analysis, machine learning, spatial
modelling, single cell genomics, cancer pathology and software development. Specifically, we will: 1. Develop
algorithms to classify different types of cells based on nucleus morphology, that will be applicable to all types of
tissue images. 2. Develop a powerful image restoration tool and quality enhancer for restoring blurred regions,
enhancing low resolution/magnification into high resolution, and normalizing staining colors. 3. Develop and
integrate tissue image analysis, spatial modeling and visualization tools into the iSEE-Cell platform. We will
engage users, including informaticians, oncologists, pathologists, surgeons and cancer biologists, in the process
of algorithm and tool development to collect feedback for the proposed informatics tools. All proposed methods
were motivated by real-world biological and clinical applications. If implemented successfully, the proposed study
will facilitate users in studying the tumor microenvironment and in improving cancer risk assessment, diagnosis,
and outcome prediction.
项目摘要
组织载玻片的数字扫描,包括苏木精和伊红(H&E)染色,
免疫组织化学(IHC)染色的载玻片正在成为常规的临床程序。技术进步
在成像、计算和分子分析方面,
分辨率,同时保留细胞空间信息及其组织学背景。这些因素的汇合
这些发展为研究肿瘤形态学之间的关系创造了前所未有的机会,
分子事件和临床结果。然而,缺乏可以充分利用这些信息的计算工具。
在单细胞水平的组织图像中的全面信息。本提案的总体目标是
开发iSEE-Cell(基于图像的细胞空间模式探索器),这是一套信息学工具,
单细胞分辨率的数据分析、空间建模和数据集成。为了实现这一目标,我们
我已经建立了一个强大的研究团队,在图像分析,机器学习,空间
建模、单细胞基因组学、癌症病理学和软件开发。具体来说,我们将:1。发展
基于细胞核形态对不同类型的细胞进行分类的算法,这将适用于所有类型的细胞。
组织图像。2.开发一个强大的图像恢复工具和质量增强器,用于恢复模糊区域,
将低分辨率/放大率增强为高分辨率,并使染色颜色标准化。3.开发和
将组织图像分析、空间建模和可视化工具集成到iSEE-Cell平台中。我们将
让包括信息学家、肿瘤学家、病理学家、外科医生和癌症生物学家在内的用户参与这一过程
算法和工具的开发,以收集反馈的建议信息学工具。所有提议的方法
是由真实世界的生物学和临床应用所激发的。如果成功实施,
将有助于用户研究肿瘤微环境和改善癌症风险评估,诊断,
和结果预测。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
MetaNorm: incorporating meta-analytic priors into normalization of NanoString nCounter data.
- DOI:10.1093/bioinformatics/btae024
- 发表时间:2024-01-02
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guanghua Xiao其他文献
Guanghua Xiao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guanghua Xiao', 18)}}的其他基金
Developing computational algorithms for histopathological image analysis
开发组织病理学图像分析的计算算法
- 批准号:
10314050 - 财政年份:2021
- 资助金额:
$ 38.69万 - 项目类别:
Informatics Tools To Analyze And Model Whole Slide Image Data At The Single Cell Level
在单细胞水平上分析和建模整个幻灯片图像数据的信息学工具
- 批准号:
10594240 - 财政年份:2021
- 资助金额:
$ 38.69万 - 项目类别:
Developing novel algorithms for spatial molecular profiling technologies
开发空间分子分析技术的新算法
- 批准号:
10197672 - 财政年份:2021
- 资助金额:
$ 38.69万 - 项目类别:
Developing novel algorithms for spatial molecular profiling technologies
开发空间分子分析技术的新算法
- 批准号:
10457848 - 财政年份:2021
- 资助金额:
$ 38.69万 - 项目类别:
Informatics Tools To Analyze And Model Whole Slide Image Data At The Single Cell Level
在单细胞水平上分析和建模整个幻灯片图像数据的信息学工具
- 批准号:
10304819 - 财政年份:2021
- 资助金额:
$ 38.69万 - 项目类别:
Developing computational algorithms for histopathological image analysis
开发组织病理学图像分析的计算算法
- 批准号:
10552537 - 财政年份:2021
- 资助金额:
$ 38.69万 - 项目类别:
Informatics Tools To Analyze And Model Whole Slide Image Data At The Single Cell Level
在单细胞水平上分析和建模整个幻灯片图像数据的信息学工具
- 批准号:
10677280 - 财政年份:2021
- 资助金额:
$ 38.69万 - 项目类别:
Developing novel algorithms for spatial molecular profiling technologies
开发空间分子分析技术的新算法
- 批准号:
10625500 - 财政年份:2021
- 资助金额:
$ 38.69万 - 项目类别:
Developing computational algorithms for histopathological image analysis
开发组织病理学图像分析的计算算法
- 批准号:
10097119 - 财政年份:2021
- 资助金额:
$ 38.69万 - 项目类别:
Integrative Analysis to Identify Therapeutic Targets for Lung Cancer
综合分析确定肺癌治疗靶点
- 批准号:
8631669 - 财政年份:2013
- 资助金额:
$ 38.69万 - 项目类别:
相似海外基金
CAREER: Transferring biological networks emergent principles to drone swarm collaborative algorithms
职业:将生物网络新兴原理转移到无人机群协作算法
- 批准号:
2339373 - 财政年份:2024
- 资助金额:
$ 38.69万 - 项目类别:
Continuing Grant
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
- 批准号:
10655174 - 财政年份:2023
- 资助金额:
$ 38.69万 - 项目类别:
Statistical Inference from Multiscale Biological Data: theory, algorithms, applications
多尺度生物数据的统计推断:理论、算法、应用
- 批准号:
EP/Y037375/1 - 财政年份:2023
- 资助金额:
$ 38.69万 - 项目类别:
Research Grant
Analysis of words: algorithms for biological sequences, music and texts
单词分析:生物序列、音乐和文本的算法
- 批准号:
RGPIN-2016-03661 - 财政年份:2021
- 资助金额:
$ 38.69万 - 项目类别:
Discovery Grants Program - Individual
Analysis of words: algorithms for biological sequences, music and texts
单词分析:生物序列、音乐和文本的算法
- 批准号:
RGPIN-2016-03661 - 财政年份:2019
- 资助金额:
$ 38.69万 - 项目类别:
Discovery Grants Program - Individual
Building flexible biological particle detection algorithms for emerging real-time instrumentation
为新兴实时仪器构建灵活的生物颗粒检测算法
- 批准号:
2278799 - 财政年份:2019
- 资助金额:
$ 38.69万 - 项目类别:
Studentship
CAREER: Microscopy Image Analysis to Aid Biological Discovery: Optics, Algorithms, and Community
职业:显微镜图像分析有助于生物发现:光学、算法和社区
- 批准号:
2019967 - 财政年份:2019
- 资助金额:
$ 38.69万 - 项目类别:
Standard Grant
Analysis of words: algorithms for biological sequences, music and texts
单词分析:生物序列、音乐和文本的算法
- 批准号:
RGPIN-2016-03661 - 财政年份:2018
- 资助金额:
$ 38.69万 - 项目类别:
Discovery Grants Program - Individual
Analysis of words: algorithms for biological sequences, music and texts
单词分析:生物序列、音乐和文本的算法
- 批准号:
RGPIN-2016-03661 - 财政年份:2017
- 资助金额:
$ 38.69万 - 项目类别:
Discovery Grants Program - Individual
Analysis of words: algorithms for biological sequences, music and texts
单词分析:生物序列、音乐和文本的算法
- 批准号:
RGPIN-2016-03661 - 财政年份:2016
- 资助金额:
$ 38.69万 - 项目类别:
Discovery Grants Program - Individual