Integrative Analysis to Identify Therapeutic Targets for Lung Cancer

综合分析确定肺癌治疗靶点

基本信息

  • 批准号:
    8631669
  • 负责人:
  • 金额:
    $ 32.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-26 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

Summary The development of molecularly targeted drugs, specifically those which modulate the activities of one or several proteins involved in the pathogenesis of a cancer, is the most exciting field for cancer treatment because targeted anticancer drugs have the potential to provide dramatic clinical benefits with little toxicity. In order to develop new molecularly targeted drugs for lung cancer, the leading cause of cancer in the world, we have collected a large amount of data, including genetic/epigenetic (mutations, copy number variation, and methylation), mRNA expression, protein expression and genome-wide RNAi functional screening data on 108 non-small cell lung cancer (NSCLC) cell lines. Integrating these large-scale and complementary datasets from different sources will provide great opportunities to discover new molecular mechanisms of lung cancer. In Aim 1 of this study, we will develop a powerful computational model to integrate multiple genomic, proteomic and functional datasets to identify new lung cancer driver genes. Only a small subset of tumor driver genes is traditionally "druggable" targets. In Aim 2 of this study, we will use a data-driven and unbiased approach to discover and evaluate potential new therapeutic targets in lung cancer. A novel reverse engineering approach will be proposed to construct a lung-cancer-specific gene network. In Aim 3 of this study, we will develop a publicly available comprehensive lung cancer database with a user-friendly interface and powerful analysis engine. This database will include all genomic, proteomic and functional data together with the de-identified clinical data used in this study. By using the state-of-the-art information technology, we will integrate these datasets with analytic algorithms and a user-friendly interface in a publicly available database so that researchers worldwide can utilize and test the data and computational tools generated from this study.
总结 分子靶向药物的发展,特别是那些调节一个分子活性的药物。 或参与癌症发病机制的几种蛋白质,是癌症治疗中最令人兴奋的领域 因为靶向抗癌药物有潜力提供显着的临床益处,而且毒性很小。在 为了开发新的分子靶向药物治疗肺癌,世界上主要的癌症原因,我们 已经收集了大量的数据,包括遗传/表观遗传(突变,拷贝数变异, 甲基化)、mRNA表达、蛋白质表达和基因组范围的RNAi功能筛选数据。 非小细胞肺癌(NSCLC)细胞系。将这些大规模和互补的数据集从 不同的来源将为发现肺癌新的分子机制提供巨大的机会。在Aim中 1,我们将开发一个强大的计算模型来整合多个基因组,蛋白质组和 功能数据集来识别新的肺癌驱动基因。 只有一小部分肿瘤驱动基因是传统上“可药物化”的靶点。在本研究的目标2中,我们 将使用数据驱动和公正的方法来发现和评估潜在的新治疗靶点, 肺癌本研究将提出一种新的逆向工程方法来构建肺癌特异性基因 网络 在本研究的目标3中,我们将开发一个公开可用的综合性肺癌数据库, 用户友好的界面和强大的分析引擎。该数据库将包括所有基因组,蛋白质组和 功能数据以及本研究中使用的去识别临床数据。通过使用最先进的 资讯科技方面,我们会把这些数据集与分析算法和方便用户的界面结合起来, 一个公开的数据库,使世界各地的研究人员可以利用和测试的数据和计算 从这项研究中产生的工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Guanghua Xiao其他文献

Guanghua Xiao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Guanghua Xiao', 18)}}的其他基金

Developing computational algorithms for histopathological image analysis
开发组织病理学图像分析的计算算法
  • 批准号:
    10314050
  • 财政年份:
    2021
  • 资助金额:
    $ 32.99万
  • 项目类别:
Informatics Tools To Analyze And Model Whole Slide Image Data At The Single Cell Level
在单细胞水平上分析和建模整个幻灯片图像数据的信息学工具
  • 批准号:
    10594240
  • 财政年份:
    2021
  • 资助金额:
    $ 32.99万
  • 项目类别:
Developing novel algorithms for spatial molecular profiling technologies
开发空间分子分析技术的新算法
  • 批准号:
    10197672
  • 财政年份:
    2021
  • 资助金额:
    $ 32.99万
  • 项目类别:
Developing novel algorithms for spatial molecular profiling technologies
开发空间分子分析技术的新算法
  • 批准号:
    10457848
  • 财政年份:
    2021
  • 资助金额:
    $ 32.99万
  • 项目类别:
Informatics Tools To Analyze And Model Whole Slide Image Data At The Single Cell Level
在单细胞水平上分析和建模整个幻灯片图像数据的信息学工具
  • 批准号:
    10681472
  • 财政年份:
    2021
  • 资助金额:
    $ 32.99万
  • 项目类别:
Informatics Tools To Analyze And Model Whole Slide Image Data At The Single Cell Level
在单细胞水平上分析和建模整个幻灯片图像数据的信息学工具
  • 批准号:
    10304819
  • 财政年份:
    2021
  • 资助金额:
    $ 32.99万
  • 项目类别:
Developing computational algorithms for histopathological image analysis
开发组织病理学图像分析的计算算法
  • 批准号:
    10552537
  • 财政年份:
    2021
  • 资助金额:
    $ 32.99万
  • 项目类别:
Informatics Tools To Analyze And Model Whole Slide Image Data At The Single Cell Level
在单细胞水平上分析和建模整个幻灯片图像数据的信息学工具
  • 批准号:
    10677280
  • 财政年份:
    2021
  • 资助金额:
    $ 32.99万
  • 项目类别:
Developing computational algorithms for histopathological image analysis
开发组织病理学图像分析的计算算法
  • 批准号:
    10097119
  • 财政年份:
    2021
  • 资助金额:
    $ 32.99万
  • 项目类别:
Developing novel algorithms for spatial molecular profiling technologies
开发空间分子分析技术的新算法
  • 批准号:
    10625500
  • 财政年份:
    2021
  • 资助金额:
    $ 32.99万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.99万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 32.99万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 32.99万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 32.99万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 32.99万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 32.99万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 32.99万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 32.99万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 32.99万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 32.99万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了