Informatics Tools To Analyze And Model Whole Slide Image Data At The Single Cell Level
在单细胞水平上分析和建模整个幻灯片图像数据的信息学工具
基本信息
- 批准号:10594240
- 负责人:
- 金额:$ 24.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAlveolarArchitectureArtificial IntelligenceBiologicalBiological MarkersCellsCharacteristicsChildChildhoodChildhood RhabdomyosarcomaClassificationClinicalClinical DataCommunitiesComputational algorithmComputer AnalysisDataData AnalysesData SetDevelopmentDiagnosisDiseaseElementsFailureFundingGenomicsGoalsGrantHistologicHistologyImageIndividualInterdisciplinary StudyLeadMalignant - descriptorMalignant Childhood NeoplasmMalignant NeoplasmsMeasurementModelingModernizationMorphologyMuscleParentsPathologicPathologistPatient-Focused OutcomesPatientsPediatric Oncology GroupPerformancePhysiciansPlayProspective StudiesRecurrent diseaseResearchResearch InstituteResolutionRhabdomyosarcomaRiskRoleSoft Tissue NeoplasmsSoft tissue sarcomaSuggestionSurvival RateTechnologyTexasTissuesUnited Statesarmbasebonecancer preventioncell typeclinical carecohortdata integrationdeep learningdeep learning modeldesigndigital imagingdisorder riskexperiencehigh riskimage processingimprovedindividual patientindividualized medicineinformatics toolinsightmodel developmentnoveloutcome predictionpathology imagingpatient prognosispatient stratificationpediatric patientsprecision medicinepredictive markerpredictive modelingprognostic modelrisk stratificationtooltreatment planningtumor heterogeneityuser-friendlywhole slide imaging
项目摘要
Project Summary
Rhabdomyosarcoma (RMS), the most common soft tissue tumor in childhood, occurs in 350 children annually in
the United States. Correctly classifying the RMS subtypes and having an outlook for patient prognosis is crucial for
determining treatment options. The objective of this proposal is to design and develop informatics tools to provide RMS
subtype classification and patient prognosis prediction from whole slide images (WSIs). The rationale underlying this
proposal is that the development of the deep learning tools will provide objective measurements and judgements of the
disease and make pathologists and physicians better informed to make precise diagnosis and treatment suggestions. The
goal will be realized by pursuing two specific aims: (1) Develop informatics tools to analyze whole slide imaging data for
pediatric RMS. (2) Develop and validate pathology image-based RMS outcome prediction models. The proposed research
is significant as the completion of it will provide viable tools to aid pathologists and physicians to improve RMS diagnosis
and treatments, and it could be extendable to other malignant diseases. In summary, we have assembled a multi-
disciplinary research team with complementary research expertise. We will fully leverage the development from the
parent NCI ITCR U01 grant 1U01CA249245, “Informatics Tools To Analyze And Model Whole Slide Image Data At The Single
Cell Level” (Funding Period: 09/01/2021 – 08/31/2024). We will also fully utilize our accumulated data and extensive
experience to solve the challenge of developing computational algorithms for pathology imaging analysis and outcome
prediction for pediatric RMS. This will greatly facilitate treatment planning for individual RMS patients and will have an
important impact on clinical care.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guanghua Xiao其他文献
Guanghua Xiao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guanghua Xiao', 18)}}的其他基金
Developing computational algorithms for histopathological image analysis
开发组织病理学图像分析的计算算法
- 批准号:
10314050 - 财政年份:2021
- 资助金额:
$ 24.6万 - 项目类别:
Developing novel algorithms for spatial molecular profiling technologies
开发空间分子分析技术的新算法
- 批准号:
10457848 - 财政年份:2021
- 资助金额:
$ 24.6万 - 项目类别:
Developing novel algorithms for spatial molecular profiling technologies
开发空间分子分析技术的新算法
- 批准号:
10197672 - 财政年份:2021
- 资助金额:
$ 24.6万 - 项目类别:
Informatics Tools To Analyze And Model Whole Slide Image Data At The Single Cell Level
在单细胞水平上分析和建模整个幻灯片图像数据的信息学工具
- 批准号:
10681472 - 财政年份:2021
- 资助金额:
$ 24.6万 - 项目类别:
Informatics Tools To Analyze And Model Whole Slide Image Data At The Single Cell Level
在单细胞水平上分析和建模整个幻灯片图像数据的信息学工具
- 批准号:
10304819 - 财政年份:2021
- 资助金额:
$ 24.6万 - 项目类别:
Developing computational algorithms for histopathological image analysis
开发组织病理学图像分析的计算算法
- 批准号:
10552537 - 财政年份:2021
- 资助金额:
$ 24.6万 - 项目类别:
Informatics Tools To Analyze And Model Whole Slide Image Data At The Single Cell Level
在单细胞水平上分析和建模整个幻灯片图像数据的信息学工具
- 批准号:
10677280 - 财政年份:2021
- 资助金额:
$ 24.6万 - 项目类别:
Developing computational algorithms for histopathological image analysis
开发组织病理学图像分析的计算算法
- 批准号:
10097119 - 财政年份:2021
- 资助金额:
$ 24.6万 - 项目类别:
Developing novel algorithms for spatial molecular profiling technologies
开发空间分子分析技术的新算法
- 批准号:
10625500 - 财政年份:2021
- 资助金额:
$ 24.6万 - 项目类别:
Integrative Analysis to Identify Therapeutic Targets for Lung Cancer
综合分析确定肺癌治疗靶点
- 批准号:
8631669 - 财政年份:2013
- 资助金额:
$ 24.6万 - 项目类别:
相似海外基金
Gain-of-function toxicity in alpha-1 antitrypsin deficient type 2 alveolar epithelial cells
α-1 抗胰蛋白酶缺陷型 2 型肺泡上皮细胞的功能获得毒性
- 批准号:
10751760 - 财政年份:2024
- 资助金额:
$ 24.6万 - 项目类别:
The role of alveolar macrophages and regulatory pathways in post-transplant lung inflammation.
肺泡巨噬细胞和调节途径在移植后肺部炎症中的作用。
- 批准号:
23K08315 - 财政年份:2023
- 资助金额:
$ 24.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:
10677169 - 财政年份:2023
- 资助金额:
$ 24.6万 - 项目类别:
Mechanistic studies of the genetic contribution of desmoplakin to pulmonary fibrosis in alveolar type 2 cells
桥粒斑蛋白对肺泡2型细胞肺纤维化的遗传贡献机制研究
- 批准号:
10736228 - 财政年份:2023
- 资助金额:
$ 24.6万 - 项目类别:
Pilot Studies of PAX3-FOXO1 Fusions Proteins in Alveolar Rhabdomyosarcoma
PAX3-FOXO1 融合蛋白在肺泡横纹肌肉瘤中的初步研究
- 批准号:
10726763 - 财政年份:2023
- 资助金额:
$ 24.6万 - 项目类别:
Novel alveolar mechanisms of hypoxemia in hepatopulmonary syndrome
肝肺综合征低氧血症的新肺泡机制
- 批准号:
10718446 - 财政年份:2023
- 资助金额:
$ 24.6万 - 项目类别:
Utilizing induced pluripotent stem cells to study the role of alveolar type 2 cell dysfunction in pulmonary fibrosis
利用诱导多能干细胞研究肺泡2型细胞功能障碍在肺纤维化中的作用
- 批准号:
10591174 - 财政年份:2023
- 资助金额:
$ 24.6万 - 项目类别:
Injury of blood brain and alveolar-endothelial barriers caused by alcohol and electronic cigarettes via purinergic receptor signaling
酒精和电子烟通过嘌呤受体信号传导引起血脑和肺泡内皮屏障损伤
- 批准号:
10638221 - 财政年份:2023
- 资助金额:
$ 24.6万 - 项目类别:
Alveolar Epithelial Cell Dysfunction Induced By Flavored E-Cigarette Aerosols
加味电子烟气雾剂引起的肺泡上皮细胞功能障碍
- 批准号:
10770080 - 财政年份:2023
- 资助金额:
$ 24.6万 - 项目类别:
Delineating the role of let-7 microRNA on lung AT2 cell homeostasis, alveolar regeneration, and interstitial lung disease
描述let-7 microRNA对肺AT2细胞稳态、肺泡再生和间质性肺疾病的作用
- 批准号:
10634881 - 财政年份:2023
- 资助金额:
$ 24.6万 - 项目类别: