Development of a high throughput microtissue model for integrative analysis of contractile function and biomechanical stress in iPSC-derived cardiomyocytes
开发高通量微组织模型,用于综合分析 iPSC 衍生心肌细胞的收缩功能和生物力学应激
基本信息
- 批准号:10312792
- 负责人:
- 金额:$ 7.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-12-15 至 2022-11-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalActinsAdmixtureAffectAgonistArrhythmiaBiologicalBiological ModelsBiomechanicsBiomedical EngineeringBiophysicsCalciumCardiacCardiac MyocytesCardiomyopathiesCell Culture TechniquesCellsClassificationClinical TrialsContractile ProteinsContractile SystemContractsCustomDataDefectDependenceDevelopmentDilated CardiomyopathyDiseaseElastomersEngineeringEventExhibitsFibroblastsFilamentFunctional disorderFutureGene MutationGenerationsGenesGeneticGenetic ModelsGenetic VariationGenotypeHeartHeart ContractilitiesHeart failureHumanHydrogelsHypertrophic CardiomyopathyIn VitroIndividualLabelLaboratory StudyLeadLinkMeasuresMethodologyMethodsMicrofilamentsModelingMusMuscleMuscle FibersMutationMyocardial tissueMyocardiumMyosin ATPasePathologyPatientsPatternPharmacological TreatmentPharmacologyPhenotypePhysiologicalPopulationRNARegulationRelaxationReportingResolutionRodent ModelSarcomeresStressSubgroupSudden DeathSystemTechniquesTechnologyTestingThickThick FilamentThin FilamentThinnessTimeTissuesTraction Force MicroscopyTransfectionVariantWorkloadantagonistbiophysical modelcohortgenetic variantimprovedin vivoin vivo Modelindividual responseinduced pluripotent stem cellinduced pluripotent stem cell derived cardiomyocytesinherited cardiomyopathyinhibitormutantnew technologynovelphysiologic modelprecision medicinepredicting responsereconstitutionresponsestem cellstooltreatment responsetwo-dimensionalvariant of unknown significance
项目摘要
ABSTRACT
Cardiomyopathies, including hypertrophic (HCM) and dilated (DCM) cardiomyopathy, are conditions in which
heart muscle dysfunction may lead to arrhythmias and heart failure. Cardiomyopathies are most commonly
caused by variants in sarcomere genes that encode contractile proteins. The immediate effect of these genetic
variants is perturbation of contractile function. However, a clear understanding of how the thousands of different
variants in individual sarcomere genes differentially affect contractile function to cause HCM and DCM has not
been attained. Furthermore, traditional systems have not been able to efficiently study the interaction between
genetic variants affecting contractile function and varying levels of biomechanical workload that models the in
vivo state. Cardiomyocytes differentiated from induced pluripotent stem cells (iPSC-CMs) are a promising model
system that allow the study of HCM- and DCM-causing mutations in a human cell context, but the capacity of
this model system for contractile analysis has been limited because of technical and biologic hurdles. My
preliminary data shows that an optimized bioengineered platform enables generation of contracting micrometer-
scale 2-dimensional heart muscle tissues (referred to as M2D) on an elastomer substrate. M2D tissues exhibit
coordinated, uniaxial contraction, robust myofibrillar alignment, and expected responses to contractile
agonists/antagonists. In addition, my preliminary data shows that the M2D tissues are amenable to modified
RNA transfection, enabling >90% mutant replacement of contractile proteins. I hypothesize that the M2D
technology will enable mechanistic determination of dysregulated contractile velocity and workload relationships
in cardiomyopathy patient iPSCMs compared to controls, and, moreover, that these analyses will enable
subclassification of contractile defects due to thick vs. thin filament mutations that will predict responses to
pharmacologic modulation of contractile function. The first aim tests the capacity of the M2D system to
discriminate contractile dysregulation in patient iPSCM muscle tissues with thick (MYH7, MYBPC3) vs thin
(TNNT2) filament sarcomere gene variants in a total of 10 patient iPSC lines, as compared to controls. Modified
RNA transfections will be used as additional models since we are able to achieve very high transfection
efficiencies in the M2D system. Both myofibrillar alignment and contractile function will be quantified using
custom analysis tools. Sensitivity of contractile function to calcium concentration will also be assessed in both
patient and control muscle tissues. The second aim will test whether thick vs. thin filament variant iPSCMs have
a differential reversal of contractile dysregulation with the myosin inhibitor Myk-461. The implementation of the
M2D technology to interrogate contractile function in the presence of sarcomere gene variants will be
transformative for precision analysis of patient-specific heart muscle cells by enabling analysis of contractile
phenotypes in a physiologic microenvironment with tunable workload. In addition, the implementation of this
novel technology will be a major strategy to bridge from my K08 to future R01 proposals.
摘要
心肌病,包括肥厚型(HCM)和扩张型(DCM)心肌病,是指
心脏肌肉功能障碍可能导致心律失常和心力衰竭。心肌病是最常见的
由编码收缩蛋白的肌节基因变异引起。这些基因的直接影响
变分是收缩函数的摄动。然而,清醒地认识到千千万万的不同
单个肌节基因变异对收缩功能的不同影响导致肥厚型心肌病和扩张型心肌病
已经实现了。此外,传统的系统已经不能有效地研究
影响收缩功能的遗传变异和不同水平的生物力学工作负荷
活体状态。诱导多能干细胞分化为心肌细胞是一种很有前途的模型
该系统允许在人类细胞环境中研究HCM和DCM引起的突变,但
由于技术和生物方面的障碍,这种收缩分析的模型系统一直受到限制。我的
初步数据显示,优化的生物工程平台能够产生收缩微米-
在弹性体基质上缩放二维心肌组织(简称M2D)。M2D组织展品
协调的单轴收缩、强健的肌原纤维排列和预期的收缩反应
激动剂/拮抗剂。此外,我的初步数据显示,M2D组织可以进行修改
RNA转染,使>;90%的突变替换收缩蛋白。我假设M2D
技术将使机械地确定失调的收缩速度和负荷关系成为可能
心肌病患者的IPSCM与对照组的比较,而且,这些分析将使
粗丝突变和细丝突变引起的收缩缺陷的细分将预测对
收缩功能的药物调节。第一个目标是测试M2D系统的能力
厚型(MYH7,MYBPC3)和薄型IPSCM患者肌肉组织收缩功能失调的鉴别
与对照组相比,总共10个患者IPSC系中的(TNNT2)细丝肌节基因变异。已修改
由于我们能够实现非常高的转染率,所以RNA转染法将被用作额外的模型
M2D系统的效率。肌原纤维排列和收缩功能都将使用
自定义分析工具。收缩功能对钙浓度的敏感性也将在两种情况下进行评估
患者和对照肌肉组织。第二个目标将测试粗丝和细丝变体IPSCM是否具有
肌球蛋白抑制剂Myk-461对收缩失调的差异性逆转。《公约》
M2D技术将在肌节基因变异存在的情况下询问收缩功能
通过启用收缩分析,实现患者特定心肌细胞的精确分析的变革性
在工作负荷可调的生理微环境中的表型。此外,这一点的实施
新技术将是从我的K08提案到未来的R01提案的主要战略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ADAM S HELMS其他文献
ADAM S HELMS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ADAM S HELMS', 18)}}的其他基金
Dissection and Rescue of Mechanical and Transcriptional Defects in Desmoplakin Cardiomyopathy
桥粒斑蛋白心肌病机械和转录缺陷的剖析和挽救
- 批准号:
10181155 - 财政年份:2021
- 资助金额:
$ 7.8万 - 项目类别:
Genome-Engineered Stem Cell Models to Determine Disease Mechanisms in MYBPC3 Hypertrophic Cardiomyopathy
基因组工程干细胞模型确定 MYBPC3 肥厚性心肌病的疾病机制
- 批准号:
9178315 - 财政年份:2016
- 资助金额:
$ 7.8万 - 项目类别:
Genome-Engineered Stem Cell Models to Determine Disease Mechanisms in MYBPC3 Hypertrophic Cardiomyopathy
基因组工程干细胞模型确定 MYBPC3 肥厚性心肌病的疾病机制
- 批准号:
9321380 - 财政年份:2016
- 资助金额:
$ 7.8万 - 项目类别:
相似海外基金
A novel motility system driven by two classes of bacterial actins MreB
由两类细菌肌动蛋白 MreB 驱动的新型运动系统
- 批准号:
22KJ2613 - 财政年份:2023
- 资助金额:
$ 7.8万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The structural basis of plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
342887 - 财政年份:2016
- 资助金额:
$ 7.8万 - 项目类别:
Operating Grants
The structural basis for plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
278338 - 财政年份:2013
- 资助金额:
$ 7.8万 - 项目类别:
Operating Grants
Cytoplasmic Actins in Maintenance of Muscle Mitochondria
细胞质肌动蛋白在维持肌肉线粒体中的作用
- 批准号:
8505938 - 财政年份:2012
- 资助金额:
$ 7.8万 - 项目类别:
Differential Expression of the Diverse Plant Actins
多种植物肌动蛋白的差异表达
- 批准号:
7931495 - 财政年份:2009
- 资助金额:
$ 7.8万 - 项目类别:
Studies on how actins and microtubules are coordinated and its relevancy.
研究肌动蛋白和微管如何协调及其相关性。
- 批准号:
19390048 - 财政年份:2007
- 资助金额:
$ 7.8万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Interaction of myosin with monomeric actins
肌球蛋白与单体肌动蛋白的相互作用
- 批准号:
5311554 - 财政年份:2001
- 资助金额:
$ 7.8万 - 项目类别:
Priority Programmes
STRUCTURE/INTERACTIONS OF ACTINS AND ACTIN-BINDING PROTEIN
肌动蛋白和肌动蛋白结合蛋白的结构/相互作用
- 批准号:
6316669 - 财政年份:2000
- 资助金额:
$ 7.8万 - 项目类别:














{{item.name}}会员




