Genome-Engineered Stem Cell Models to Determine Disease Mechanisms in MYBPC3 Hypertrophic Cardiomyopathy
基因组工程干细胞模型确定 MYBPC3 肥厚性心肌病的疾病机制
基本信息
- 批准号:9321380
- 负责人:
- 金额:$ 16.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAffectAllelesArrhythmiaBackcrossingsBiological ModelsCRISPR/Cas technologyCalcineurinCalciumCalcium SignalingCardiacCardiac MyocytesCardiac MyosinsCell Culture TechniquesCell LineCell modelCellsChronicClinicalDataDevelopmentDevelopment PlansDiseaseDominant-Negative MutationElectrophysiology (science)EtiologyFunctional disorderFutureGenesGeneticGenomeGenome engineeringGenotypeGoalsHeartHeart AbnormalitiesHeart DiseasesHeart failureHumanHypertrophic CardiomyopathyHypertrophyImpairmentInduced MutationInheritedKnock-inKnock-in MouseKnock-outKnockout MiceKnowledgeLeadLinkMeasuresModelingMutationMyocardiumMyopathyOrganPathogenesisPathway interactionsPatientsPhenotypePhosphotransferasesPopulationPredispositionProductionProtein TruncationProteinsResearch PersonnelRoleSarcomeresSignal PathwaySignal TransductionStem cellsStimulusStructureSudden DeathSystemTechniquesTestingTherapeuticTissue SampleTrainingTranscriptUp-RegulationWorkcalmodulin-dependent protein kinase IIcareercareer developmentcitrate carrierdisorder controlheart rhythmhuman diseasehuman stem cellsin vivoinduced pluripotent stem cellinhibitor/antagonistloss of functionmouse modelmultidisciplinarymutantmyosin-binding protein Cprematureskillstherapeutic developmenttranscriptome sequencing
项目摘要
ABSTRACT
Hypertrophic cardiomyopathy (HCM) is the most common Mendelian inherited cardiac disease and can be
complicated by heart failure, arrhythmias, and sudden death. Over 60% of genetically-defined HCM is due to
mutations in MYBPC3. Most MYBPC3 mutations cause premature protein truncations, but the specific
mechanisms by which these mutations lead to hypertrophy and arrhythmias is elusive. These mutations may
lead to loss of function (haploinsufficiency) but may also exert dominant negative effects from truncated
MYBPC3 protein. My previous work has demonstrated an increase in MYBPC3 at the transcript level and no
difference in protein abundance, countering the loss of function hypothesis. I have further shown in preliminary
data that truncated MYBPC3 proteins demonstrate a capacity for dominant negative effects since they are able
to incorporate in the cardiac sarcomere but mislocalize and negatively influence contractility. I hypothesize that
truncating mutations in MYBPC3 exert genotype-specific dominant negative effects that impair sarcomere
organization, predispose to arrhythmia, and activate hypertrophic signalling. The hypothesis will be explored
with three specific aims, which leverage both human induced pluripotent stem cells derived cardiomyocytes
(hiPSC-CMs) to investigate early consequences of MYBPC3 mutations, and mouse models to investigate late
consequences of MYBPC3 mutations. The first aim utilizes hiPSC lines that have been genome-engineered
using the CRISPR-Cas9 system to create lines that are genetically identical except for an allelic spectrum of
three specific MYBPC3 mutations. HiPSC-CM immaturity is addressed using modified cell culture substrates
and micropatterning techniques. These hiPSC-CMs will be compared for sarcomere organization, contractility,
calcium handling, and arrhythmia susceptibility. The second aim compares a heterozygous MYBPC3 knock-out
mouse model with a heterozygous MYBPC3 knock-in (truncating mutation) mouse model, which are direct
corollaries for the hiPSC-CM models in the first aim, and will be compared at 6 months for analogous in vivo
phenotypes that reflect chronic adverse remodeling. The third aim explores the hypothesis that the calcineurin-
CaMKII signaling pathway is critical in the pathogenesis of hypertrophy and arrhythmia susceptibility due to
truncating mutations in MYBPC3, as supported by my preliminary data for this pathway in human HCM. The
proposal will provide convincing evidence for the role of truncated MYBPC3 dominant negative effects as a
mechanistic upstream cause of sarcomere dysfunction, arrhyhthmias, and calcium mishandling in HCM.
Furthermore, the findings will have imminent clinical impact since truncating MYBPC3 mutations are the most
common genetic cause of HCM, and therefore results of this study have high potential for influencing future
genotype-specific therapeutic development. The proposed project and career development plan will also be an
excellent training vehicle to achieve my long-term career goal of becoming an independent investigator who
will lead a multidisciplinary team to better understand and treat inherited heart disease.
抽象的
肥厚性心肌病(HCM)是最常见的孟德尔遗传性心脏病,可以是
因心力衰竭,心律不齐和猝死而复杂。超过60%的遗传定义的HCM是由于
MYBPC3中的突变。大多数MyBPC3突变会导致过早的蛋白质截断,但特定于
这些突变导致肥大和心律不齐的机制难以捉摸。这些突变可能
导致功能丧失(单倍弥补),但也可能造成截短的显着负面影响
mybpc3蛋白。我以前的工作表明在笔录级别上有MYBPC3的增加,没有
蛋白质丰度的差异,反对功能假设的丧失。我进一步显示了
截断MyBPC3蛋白的数据显示出具有主要负面影响的能力,因为它们能够
将其纳入心脏肌膜中,但不定位并对收缩性产生负面影响。我假设这一点
MYBPC3中的截断突变发挥基因型特异性的显性负面影响,损害了肌膜
组织,心律不齐,并激活肥厚的信号传导。将探讨该假设
以三个特定的目的,它利用了两个人类诱导的多能干细胞衍生的心肌细胞
(HIPSC-CMS)研究MYBPC3突变的早期后果和小鼠模型以研究迟
MYBPC3突变的后果。第一个目标利用了经过基因组工程的HIPSC线
使用CRISPR-CAS9系统来创建遗传上相同的线,除了等位基因谱
三个特定的MyBPC3突变。 HIPSC-CM不成熟是使用修饰的细胞培养基材解决的
和微观图案。这些HIPSC-CMS将在肌节组织,收缩力,
钙处理和心律不齐的敏感性。第二个目标比较了杂合MYBPC3淘汰赛
具有杂合MYBPC3敲进(截断突变)小鼠模型的小鼠模型,该模型是直接的
第一个目标中HIPSC-CM模型的推论,将在6个月的体内进行比较
反映慢性不良重塑的表型。第三个目的探讨了钙调神经蛋白酶的假设
CAMKII信号通路对于由于
MybPC3中的截断突变,在人类HCM中该途径的初步数据支持。这
提案将提供令人信服的证据证明MybPC3截断的作用主要负面影响
HCM中的肌节功能障碍,心血症和钙不当的机械上游原因。
此外,这些发现将产生临床影响,因为截断MYBPC3突变是最大的
HCM的常见遗传原因,因此这项研究的结果具有影响未来的很高潜力
基因型特异性治疗发育。拟议的项目和职业发展计划也将是
出色的训练工具,以实现成为成为独立调查员的长期职业目标
将带领一个多学科团队更好地理解和治疗遗传的心脏病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ADAM S HELMS其他文献
ADAM S HELMS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ADAM S HELMS', 18)}}的其他基金
Dissection and Rescue of Mechanical and Transcriptional Defects in Desmoplakin Cardiomyopathy
桥粒斑蛋白心肌病机械和转录缺陷的剖析和挽救
- 批准号:
10181155 - 财政年份:2021
- 资助金额:
$ 16.33万 - 项目类别:
Development of a high throughput microtissue model for integrative analysis of contractile function and biomechanical stress in iPSC-derived cardiomyocytes
开发高通量微组织模型,用于综合分析 iPSC 衍生心肌细胞的收缩功能和生物力学应激
- 批准号:
10312792 - 财政年份:2020
- 资助金额:
$ 16.33万 - 项目类别:
Genome-Engineered Stem Cell Models to Determine Disease Mechanisms in MYBPC3 Hypertrophic Cardiomyopathy
基因组工程干细胞模型确定 MYBPC3 肥厚性心肌病的疾病机制
- 批准号:
9178315 - 财政年份:2016
- 资助金额:
$ 16.33万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 16.33万 - 项目类别:
Effects of Aging on Neuronal Lysosomal Damage Responses Driven by CMT2B-linked Rab7
衰老对 CMT2B 相关 Rab7 驱动的神经元溶酶体损伤反应的影响
- 批准号:
10678789 - 财政年份:2023
- 资助金额:
$ 16.33万 - 项目类别:
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
- 批准号:
10677047 - 财政年份:2023
- 资助金额:
$ 16.33万 - 项目类别:
Design and testing of a novel circumesophageal cuff for chronic bilateral subdiaphragmatic vagal nerve stimulation (sVNS)
用于慢性双侧膈下迷走神经刺激(sVNS)的新型环食管套囊的设计和测试
- 批准号:
10702126 - 财政年份:2023
- 资助金额:
$ 16.33万 - 项目类别:
Rapid measurement of novel harm reduction housing on HIV risk, treatment uptake, drug use and supply
快速测量新型减害住房对艾滋病毒风险、治疗接受情况、毒品使用和供应的影响
- 批准号:
10701309 - 财政年份:2023
- 资助金额:
$ 16.33万 - 项目类别: