Genome-Engineered Stem Cell Models to Determine Disease Mechanisms in MYBPC3 Hypertrophic Cardiomyopathy
基因组工程干细胞模型确定 MYBPC3 肥厚性心肌病的疾病机制
基本信息
- 批准号:9321380
- 负责人:
- 金额:$ 16.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAffectAllelesArrhythmiaBackcrossingsBiological ModelsCRISPR/Cas technologyCalcineurinCalciumCalcium SignalingCardiacCardiac MyocytesCardiac MyosinsCell Culture TechniquesCell LineCell modelCellsChronicClinicalDataDevelopmentDevelopment PlansDiseaseDominant-Negative MutationElectrophysiology (science)EtiologyFunctional disorderFutureGenesGeneticGenomeGenome engineeringGenotypeGoalsHeartHeart AbnormalitiesHeart DiseasesHeart failureHumanHypertrophic CardiomyopathyHypertrophyImpairmentInduced MutationInheritedKnock-inKnock-in MouseKnock-outKnockout MiceKnowledgeLeadLinkMeasuresModelingMutationMyocardiumMyopathyOrganPathogenesisPathway interactionsPatientsPhenotypePhosphotransferasesPopulationPredispositionProductionProtein TruncationProteinsResearch PersonnelRoleSarcomeresSignal PathwaySignal TransductionStem cellsStimulusStructureSudden DeathSystemTechniquesTestingTherapeuticTissue SampleTrainingTranscriptUp-RegulationWorkcalmodulin-dependent protein kinase IIcareercareer developmentcitrate carrierdisorder controlheart rhythmhuman diseasehuman stem cellsin vivoinduced pluripotent stem cellinhibitor/antagonistloss of functionmouse modelmultidisciplinarymutantmyosin-binding protein Cprematureskillstherapeutic developmenttranscriptome sequencing
项目摘要
ABSTRACT
Hypertrophic cardiomyopathy (HCM) is the most common Mendelian inherited cardiac disease and can be
complicated by heart failure, arrhythmias, and sudden death. Over 60% of genetically-defined HCM is due to
mutations in MYBPC3. Most MYBPC3 mutations cause premature protein truncations, but the specific
mechanisms by which these mutations lead to hypertrophy and arrhythmias is elusive. These mutations may
lead to loss of function (haploinsufficiency) but may also exert dominant negative effects from truncated
MYBPC3 protein. My previous work has demonstrated an increase in MYBPC3 at the transcript level and no
difference in protein abundance, countering the loss of function hypothesis. I have further shown in preliminary
data that truncated MYBPC3 proteins demonstrate a capacity for dominant negative effects since they are able
to incorporate in the cardiac sarcomere but mislocalize and negatively influence contractility. I hypothesize that
truncating mutations in MYBPC3 exert genotype-specific dominant negative effects that impair sarcomere
organization, predispose to arrhythmia, and activate hypertrophic signalling. The hypothesis will be explored
with three specific aims, which leverage both human induced pluripotent stem cells derived cardiomyocytes
(hiPSC-CMs) to investigate early consequences of MYBPC3 mutations, and mouse models to investigate late
consequences of MYBPC3 mutations. The first aim utilizes hiPSC lines that have been genome-engineered
using the CRISPR-Cas9 system to create lines that are genetically identical except for an allelic spectrum of
three specific MYBPC3 mutations. HiPSC-CM immaturity is addressed using modified cell culture substrates
and micropatterning techniques. These hiPSC-CMs will be compared for sarcomere organization, contractility,
calcium handling, and arrhythmia susceptibility. The second aim compares a heterozygous MYBPC3 knock-out
mouse model with a heterozygous MYBPC3 knock-in (truncating mutation) mouse model, which are direct
corollaries for the hiPSC-CM models in the first aim, and will be compared at 6 months for analogous in vivo
phenotypes that reflect chronic adverse remodeling. The third aim explores the hypothesis that the calcineurin-
CaMKII signaling pathway is critical in the pathogenesis of hypertrophy and arrhythmia susceptibility due to
truncating mutations in MYBPC3, as supported by my preliminary data for this pathway in human HCM. The
proposal will provide convincing evidence for the role of truncated MYBPC3 dominant negative effects as a
mechanistic upstream cause of sarcomere dysfunction, arrhyhthmias, and calcium mishandling in HCM.
Furthermore, the findings will have imminent clinical impact since truncating MYBPC3 mutations are the most
common genetic cause of HCM, and therefore results of this study have high potential for influencing future
genotype-specific therapeutic development. The proposed project and career development plan will also be an
excellent training vehicle to achieve my long-term career goal of becoming an independent investigator who
will lead a multidisciplinary team to better understand and treat inherited heart disease.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ADAM S HELMS其他文献
ADAM S HELMS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ADAM S HELMS', 18)}}的其他基金
Dissection and Rescue of Mechanical and Transcriptional Defects in Desmoplakin Cardiomyopathy
桥粒斑蛋白心肌病机械和转录缺陷的剖析和挽救
- 批准号:
10181155 - 财政年份:2021
- 资助金额:
$ 16.33万 - 项目类别:
Development of a high throughput microtissue model for integrative analysis of contractile function and biomechanical stress in iPSC-derived cardiomyocytes
开发高通量微组织模型,用于综合分析 iPSC 衍生心肌细胞的收缩功能和生物力学应激
- 批准号:
10312792 - 财政年份:2020
- 资助金额:
$ 16.33万 - 项目类别:
Genome-Engineered Stem Cell Models to Determine Disease Mechanisms in MYBPC3 Hypertrophic Cardiomyopathy
基因组工程干细胞模型确定 MYBPC3 肥厚性心肌病的疾病机制
- 批准号:
9178315 - 财政年份:2016
- 资助金额:
$ 16.33万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 16.33万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 16.33万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 16.33万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 16.33万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 16.33万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 16.33万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 16.33万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 16.33万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 16.33万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 16.33万 - 项目类别:
Research Grant














{{item.name}}会员




