Dissection and Rescue of Mechanical and Transcriptional Defects in Desmoplakin Cardiomyopathy
桥粒斑蛋白心肌病机械和转录缺陷的剖析和挽救
基本信息
- 批准号:10181155
- 负责人:
- 金额:$ 47.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-20 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:ArrhythmiaBiomechanicsBiomedical EngineeringCRISPR/Cas technologyCalciumCardiacCardiac MyocytesCardiomyopathiesCharacteristicsClinicalComplexDataDefectDependovirusDevelopmentDilated CardiomyopathyDiseaseDissectionDoseEngineeringExhibitsFailureFibrosisFunctional disorderGenesGeneticGenetic TranscriptionGeometryHeartHeart InjuriesHeart failureHumanImpairmentIn VitroInflammatory ResponseInjuryIntercalated discIntercellular JunctionsLeadLeftLinkMechanical StressMechanicsMembraneMessenger RNAMethodsMorbidity - disease rateMusMuscleMutationMyocardial dysfunctionMyocardial tissueMyocardiumPathogenesisPathologyPathway interactionsPatientsPharmaceutical PreparationsPhasePlant RootsPlayPre-Clinical ModelPredispositionPreventiveProteinsRepressionRoleStressStretchingStructural ProteinStructureSubcategorySystemTestingTissue ModelTissuesTranscription CoactivatorTranscriptional ActivationTranslatingVariantVentricularVentricular ArrhythmiaVirusWorkWorkloadarrhythmogenic cardiomyopathybaseclinical translationcoronary fibrosiscytokinedesmoplakinexperimental studygene replacement therapygene therapygenetic varianthigh riskin vivoin vivo evaluationinduced pluripotent stem cellinjury and repairinsightloss of functionmRNA Expressionmortalitymouse modelnovelnovel therapeutic interventionpersonalized medicinepreventpromoterrepairedresilienceresponseresponse to injuryrestorationstem cell modelstoichiometrytooltreatment strategy
项目摘要
Abstract:
Variants in the gene desmoplakin (DSP) are one of the more common genetic causes of dilated
cardiomyopathy. DSP variants cause an arrhythmogenic form of cardiomyopathy that can lead to both lethal
ventricular arrhythmias and progressive heart failure, and no treatments are available. DSP encodes a critical
structural protein that transduces force from the contractile machinery to intercellular junctions. Prior work has
demonstrated the DSP cardiomyopathy is almost always caused by truncating genetic variants that cause a
loss of function through reduced DSP mRNA abundance. Distinct to DSP cardiomyopathy, these truncating
variants cause cardiac fibrosis to develop early in the disease course, preceding development of left ventricular
systolic dysfunction. Based on the rationale that fibrosis occurs due to the cardiac injury-repair response, we
hypothesize that reduced DSP abundance due to truncating mutations renders heart muscle tissue
susceptible to injury and fibrotic repair due to an incapacity to normally handle the cardiac workload. Our
primary objective is to test this mechanism in vitro and in vivo while also building evidence in pre-clinical
models for novel treatment strategies that can be used in patients to prevent cardiac injury in DSP patients.
Our specific aims will test the following specific hypothesis: (Aim 1) biomechanical stress induced
cardiomyocyte damage is a consequence of DSP genetic variants that can be reduced through contractile
inhibition as an upstream preventive approach; (Aim 2) loss of function consequences of DSP variants can be
completely abrogated through transcriptional rescue of DSP expression. To rigorously examine relationships
between biomechanical stress and injury in DSP cardiomyopathy, we will utilize two in vitro bioengineered
cardiac muscle tissue platforms that leverage induced pluripotent stem cells (iPSCs) derived from DSP
patients. Further, contractile antagonists will be tested as an in vivo preventive approach in a mouse model of
DSP cardiomyopathy. Although seemingly paradoxical, these experiments will test whether inhibitory
contractile modulation using re-purposed drugs is actually preventive to the development of fibrotic remodeling
in DSP cardiomyopathy by reducing biomechanical strain at the cardiomyocyte level. In parallel, we will use
these same in vitro and in vivo systems to dissect the relationships between DSP mRNA reduction and
impaired biomechanical injury response. CRISPR-Cas9 tools that enable activation and repression of
endogenous mRNA expression will be targeted to the DSP promoter. CRISPR-Cas9 activation will be tested in
vivo with adeno-associated virus as a novel gene therapy approach with high potential for clinical translation.
Taken together, this proposal will yield fundamental insights into the mechanisms by which DSP loss of
function genetic variants cause cardiomyocyte injury and fibrosis while directly translating clinical observations
towards two novel therapeutic approaches.
摘要:
桥粒蛋白(Dsp)基因变异是扩张症较为常见的遗传原因之一。
心肌病。DSP变异体导致一种致心律失常的心肌病,可导致致命的
室性心律失常和进行性心力衰竭,并且没有可用的治疗方法。DSP编码了一个关键的
将力从收缩机械传递到细胞间连接的结构蛋白。之前的工作已经完成
证明了DSP心肌病几乎总是由截断引起
通过减少DSP mRNA丰度而导致的功能丧失。与DSP心肌病不同,这些截断
变异导致心脏纤维化在病程的早期发展,先于左心室的发展
收缩功能障碍。基于心脏损伤修复反应导致纤维化发生的理论基础,我们
截断突变导致DSP丰度降低的假说呈现心肌组织
由于无法正常处理心脏工作负荷,容易受到损伤和纤维化修复。我们的
主要目标是在体外和体内测试这一机制,同时在临床前建立证据
新的治疗策略模型,可用于患者预防数字信号处理器患者的心脏损伤。
我们的具体目标将检验以下具体假设:(目标1)生物力学应力诱导
心肌细胞损伤是DSP基因变异的结果,这种变异可以通过收缩来减少
作为上游预防方法的抑制;(目标2)DSP变体的功能损失后果可能是
通过转录挽救DSP的表达而完全被取消。严谨审视人际关系
在生物力学应力和损伤之间的DSP心肌病,我们将利用两个体外生物工程
利用来自数字信号处理器的诱导多能干细胞(IPSCs)的心肌组织平台
病人。此外,收缩拮抗剂将作为体内预防方法在小鼠模型中进行测试。
数字信号处理器心肌病。尽管看似自相矛盾,但这些实验将测试抑制性
使用重新调整用途的药物进行收缩调节实际上可以预防纤维化重塑的发展
通过在心肌细胞水平上降低生物力学应变来治疗DSP心肌病。同时,我们将使用
这些相同的体外和体内系统,以剖析数字信号处理器的mRNA减少和
生物力学损伤反应受损。CRISPR-Cas9工具,支持激活和抑制
内源mRNA的表达将针对DSP启动子。CRISPR-CAS9激活将在
腺相关病毒活体作为一种新的基因治疗方法,具有很高的临床翻译潜力。
综上所述,这项提议将对DSP损失的机制产生基本的见解
功能遗传变异导致心肌细胞损伤和纤维化,直接转化为临床观察
走向两种新的治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ADAM S HELMS其他文献
ADAM S HELMS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ADAM S HELMS', 18)}}的其他基金
Development of a high throughput microtissue model for integrative analysis of contractile function and biomechanical stress in iPSC-derived cardiomyocytes
开发高通量微组织模型,用于综合分析 iPSC 衍生心肌细胞的收缩功能和生物力学应激
- 批准号:
10312792 - 财政年份:2020
- 资助金额:
$ 47.83万 - 项目类别:
Genome-Engineered Stem Cell Models to Determine Disease Mechanisms in MYBPC3 Hypertrophic Cardiomyopathy
基因组工程干细胞模型确定 MYBPC3 肥厚性心肌病的疾病机制
- 批准号:
9178315 - 财政年份:2016
- 资助金额:
$ 47.83万 - 项目类别:
Genome-Engineered Stem Cell Models to Determine Disease Mechanisms in MYBPC3 Hypertrophic Cardiomyopathy
基因组工程干细胞模型确定 MYBPC3 肥厚性心肌病的疾病机制
- 批准号:
9321380 - 财政年份:2016
- 资助金额:
$ 47.83万 - 项目类别:
相似海外基金
CAREER: Evolutionary biomechanics and functional morphology of salamander locomotion
职业:蝾螈运动的进化生物力学和功能形态
- 批准号:
2340080 - 财政年份:2024
- 资助金额:
$ 47.83万 - 项目类别:
Continuing Grant
Cruising the whale superhighway: The evolution, biomechanics, and ecological drivers of migration in cetaceans
巡航鲸鱼高速公路:鲸目动物迁徙的进化、生物力学和生态驱动因素
- 批准号:
NE/Y000757/1 - 财政年份:2024
- 资助金额:
$ 47.83万 - 项目类别:
Research Grant
2024 Summer Biomechanics, Bioengineering, and Biotransport Conference; Lake Geneva, Wisconsin; 11-14 June 2024
2024年夏季生物力学、生物工程和生物运输会议;
- 批准号:
2413182 - 财政年份:2024
- 资助金额:
$ 47.83万 - 项目类别:
Standard Grant
Predictive Biomechanics for Modelling Gait Stability and Falls Prediction
用于步态稳定性和跌倒预测建模的预测生物力学
- 批准号:
DP240101449 - 财政年份:2024
- 资助金额:
$ 47.83万 - 项目类别:
Discovery Projects
CAREER: Characterization of Vocal Fold Vascular Lesions Biomechanics using Computational Modeling
职业:使用计算模型表征声带血管病变生物力学
- 批准号:
2338676 - 财政年份:2024
- 资助金额:
$ 47.83万 - 项目类别:
Standard Grant
NSF Convergence Accelerator, Track M: TANDEM: Tensegrity-based Assistive aND rehabilitation Exosuits to complement human bioMechanics
NSF 融合加速器,轨道 M:TANDEM:基于张拉整体的辅助和康复外装,以补充人体生物力学
- 批准号:
2344385 - 财政年份:2024
- 资助金额:
$ 47.83万 - 项目类别:
Standard Grant
Doctoral Dissertation Research: The three-dimensional biomechanics of the grasping big toe among higher primates
博士论文研究:高等灵长类抓握大脚趾的三维生物力学
- 批准号:
2341368 - 财政年份:2024
- 资助金额:
$ 47.83万 - 项目类别:
Standard Grant
Biomechanics of the Swimming and Chemotaxis of the Leptospiraceae
钩端螺旋体科游泳和趋化性的生物力学
- 批准号:
2309442 - 财政年份:2023
- 资助金额:
$ 47.83万 - 项目类别:
Standard Grant
Conference: Gordon Research Conference on Biomechanics in Vascular Biology and Disease; South Hadley, Massachusetts; 6-11 August 2023
会议:戈登血管生物学和疾病生物力学研究会议;
- 批准号:
2316830 - 财政年份:2023
- 资助金额:
$ 47.83万 - 项目类别:
Standard Grant
Discovering the Biomechanics of Filamentous Fungi and their Hyphae
发现丝状真菌及其菌丝的生物力学
- 批准号:
2233973 - 财政年份:2023
- 资助金额:
$ 47.83万 - 项目类别:
Standard Grant