Harnessing big-data for plasticity and rehabilitation in translational SCI
利用大数据实现转化 SCI 的可塑性和康复
基本信息
- 批准号:10311556
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-12-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AmericanArtificial IntelligenceAutonomic DysfunctionAwardBehaviorBehavior assessmentBig DataBig Data to KnowledgeCellular biologyCervicalCervical spinal cord injuryChronicClinicalCollaborationsComplexDataData AnalysesData CollectionData CommonsData ScienceDatabasesDevelopmentDevicesDiseaseEconomic BurdenElectronic Health RecordElectrophysiology (science)EnsureFAIR principlesFDA approvedForelimbFundingFutureGoalsHand functionsHealthHigh PrevalenceHistologyHumanImageIndividualInfrastructureIngestionInjuryInvestmentsKnowledge DiscoveryLaboratoriesLearningMachine LearningMeasuresMedicalModelingModernizationMolecular BiologyMotorNatural regenerationNeurologicNeurostimulation procedures of spinal cord tissuePainParalysedPerformancePhysiologyPopulationPositioning AttributePreparationPrimatesProgramming LanguagesPublic Health InformaticsPythonsQuality of lifeRecoveryRegenerative researchRehabilitation therapyResearchResolutionRetrievalRoboticsRodent ModelSafetySensorySideSiteSpinal cord injuryStructureSyndromeSystemTaxonomyTechnologyTestingTherapeuticTimeTrainingTranslatingTranslationsVeteransWorkbrain machine interfacecare burdenclinical translationcloud basedcortex mappingcostdashboarddata ingestiondata integrationdata reusedata sharingdata streamsdeep neural networkdigitalefficacy studyelectronic datafederated computingfunctional restorationgrasphealth recordimprovedinformatics toolinnovationkinematicsmachine learning pipelinemultidimensional datamultimodal datamultimodalityneurological rehabilitationneurophysiologyneuroregulationnonhuman primatenovelnovel therapeuticsopen sourcepersistent symptompre-clinicalprecision medicineproductivity lossregenerative rehabilitationregenerative therapyresearch clinical testingrobot rehabilitationrobotic devicesafety studyshared databasespasticitystructured datasuccesstherapeutic candidatetooltranslation to humanstranslational pipelinetranslational studytranslational therapeuticsusability
项目摘要
Spinal cord injury and disorders (SCI/D) are substantial health concerns impacting veterans at a higher rate
than the civilian population. The total economic burden of SCI/D is estimated at $9 billion/year to $400 billion in
lifetime medical and loss-of-productivity costs. The most common clinical presentation is high cervical SCI/D
which produces a broad spectrum of issues, including loss of hand function, autonomy, sensory changes,
spasticity, pain and autonomic dysfunction, profoundly impacting quality of life. Restoring these functions is the
goal of regenerative and rehabilitative therapeutic approaches for SCI/D. The VA Gordon Mansfield Spinal
Cord Injury Consortium (VA-GMSCIC) is a VA-funded effort to develop late-stage translational therapeutics in
a nonhuman primate (NHP) model in preparation for testing emergent therapeutic approaches clinically. Prior
and current funding has focused on multifaceted data collection on each subject with 5 different centers
collaboratively collecting data, each within their specific domain of expertise (physiology, behavior, histology,
neurorehabilitation, and molecular biology). This is an ideal use of the NHP model, as maximal information is
collected about the performance of therapeutic approaches in a small number of NHPs. Data from this
important model is characterized by the classic ‘3Vs of Big Data’: high volume (large images), high variety
(multi-modal data), and high velocity (robotic rehab; physiology; neuromodulation), providing both a challenge
and opportunity for novel discoveries. Application of modern data science tools can help deliver on the promise
of translational precision medicine for SCI/D. As our prior work demonstrates, effective management of VA
NHP big data enables us to effectively harness VA-GMSCIC data to drive new discoveries. However,
integrating these NHP big data requires ongoing data-driven integration of robotic rehab, kinematics, histology,
and medical information. Extraction of meaningful discoveries requires extensive computational work. The
purpose of the proposed renewal is to build on our ongoing success in assembling a data commons for the
VA-GMSCIC by integrating new types of high-resolution data in support of safety/efficacy studies of novel
therapeutics. Our data science team is well positioned to achieve this goal. Our team has provided analytical
support for the VA-GMSCIC, helping to integrate data from UCSD, UCLA, UCI, UC Davis and UCSF for testing
SCI rehab and regenerative therapies in NHPs for over 13 years. We have supported development of different
injury models, behavioral assessments, electrophysiology, kinematic measures, and therapeutic approaches in
100+ subjects. Under our current merit award (ending Nov 2020), our team built on this historical background
to establish a functional primate data commons (PDC-SCI) infrastructure that enables rapid, structured data
sharing, data integration, and analytics support across the VA-GMSCIC sites. The project has helped the VA-
GMSCIC evolve from focused discovery projects to late-stage translational studies with highly-sophisticated,
large-scale “big-data” collection. We aim to expand our knowledge-discovery pipeline for these critical
translational SCI/D big data to support planned safety/efficacy studies. Specifically, the renewal will build on
our successes and expand the scope of our work by supporting integration of: Aim 1) translational electronic
health records (tEHR), Aim 2) advanced robotic rehabilitation data, Aim 3) neuromodulation data from brain-
machine interfaces, and Aim 4) advanced machine learning analytical pipelines for rapidly integrating
multidimensional data. The goal is to help VA-GMSCIC efficiently test important therapeutic candidates for
translation to humans while promoting modern data stewardship adhering to the federally-endorsed FAIR
(Findable, Accessible, Interoperable, and Reusable) data sharing principles. This will ensure that the existing
VA investment in data collection is leveraged to the maximal extent through digital technologies for enduring
knowledge-discovery from this valuable NHP model of SCI/D.
脊髓损伤和疾病(SCI/D)是影响退伍军人的重大健康问题,
比平民人口。SCI/D的总经济负担估计为90亿美元/年至4000亿美元/年。
终身医疗和生产力损失成本。最常见的临床表现是高位颈脊髓损伤/脊髓损伤
这产生了广泛的问题,包括手部功能的丧失,自主性,感觉变化,
痉挛,疼痛和自主神经功能障碍,深刻影响生活质量。恢复这些功能是
SCI/D的再生和康复治疗方法的目标。弗吉尼亚州戈登曼斯菲尔德脊柱
脊髓损伤联盟(VA-GMSCIC)是VA资助的一项努力,旨在开发脊髓损伤的晚期转化疗法。
非人灵长类动物(NHP)模型,为临床测试紧急治疗方法做准备。之前
目前的资金集中在5个不同中心对每个主题进行多方面的数据收集
协作收集数据,每个都在他们的特定专业领域(生理学,行为学,组织学,
神经康复和分子生物学)。这是NHP模型的一个理想用途,因为最大信息是
收集了关于治疗方法在少数NHP中的性能。数据从该
一个重要的模型具有经典的“大数据3V”特征:高容量(大图像)、高多样性
(多模态数据)和高速(机器人康复;生理学;神经调节),这两个方面都是一个挑战。
和新发现的机会。现代数据科学工具的应用可以帮助实现承诺
转化型精准医学的研究正如我们先前的工作所证明的那样,有效的VA管理
NHP大数据使我们能够有效地利用VA-GMSCIC数据来推动新的发现。然而,在这方面,
整合这些NHP大数据需要机器人康复,运动学,组织学,
和医疗信息。提取有意义的发现需要大量的计算工作。的
建议更新的目的是建立在我们不断成功地为
VA-GMSCIC通过整合新型高分辨率数据,支持新型药物的安全性/疗效研究
治疗学我们的数据科学团队有能力实现这一目标。我们的团队提供了分析
支持VA-GMSCIC,帮助整合来自UCSD、UCLA、UCI、UC Davis和UCSF的数据进行测试
SCI康复和再生治疗在NHP超过13年。我们支持发展不同的
损伤模型、行为评估、电生理学、运动学测量和治疗方法,
100多名受试者。在我们目前的优秀奖(截至2020年11月)下,我们的团队在这一历史背景下建立了
建立一个功能性灵长类动物数据共享(PDC-SCI)基础设施,
跨VA-GMSCIC站点的共享、数据集成和分析支持。该项目帮助了VA-
GMSCIC从重点发现项目发展到后期转化研究,
大规模的“大数据”收集。我们的目标是扩大我们的知识发现管道,为这些关键
翻译SCI/D大数据,以支持计划的安全性/有效性研究。具体而言,更新将建立在
我们的成功和扩大我们的工作范围,通过支持整合:目标1)翻译电子
健康记录(tEHR),目标2)先进的机器人康复数据,目标3)来自大脑的神经调节数据-
机器接口和Aim 4)先进的机器学习分析管道,用于快速集成
多维数据目标是帮助VA-GMSCIC有效地测试重要的治疗候选药物,
在促进现代数据管理的同时,
(可查找、可扩展、可互操作和可重用)数据共享原则。这将确保现有的
VA在数据收集方面的投资通过数字技术得到最大程度的利用,
从SCI/D这一有价值的NHP模型中发现知识。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ADAM R FERGUSON其他文献
ADAM R FERGUSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ADAM R FERGUSON', 18)}}的其他基金
Maladaptive Plasticity in Spinal Cord Injury: Cellular Mechanisms
脊髓损伤中的适应不良可塑性:细胞机制
- 批准号:
10276397 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Enhancing the Pan-Neurotrauma Data Commons (PANORAUMA) to a complete open data science tool by FAIR APIs
通过 FAIR API 将泛神经创伤数据共享 (PANORAUMA) 增强为完整的开放数据科学工具
- 批准号:
10608657 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Maladaptive Plasticity in Spinal Cord Injury: Cellular Mechanisms
脊髓损伤中的适应不良可塑性:细胞机制
- 批准号:
10649639 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Maladaptive Plasticity in Spinal Cord Injury: Cellular Mechanisms
脊髓损伤中的适应不良可塑性:细胞机制
- 批准号:
10449363 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Leveraging data-science for discovery in chronic TBI
利用数据科学发现慢性 TBI
- 批准号:
9742296 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Leveraging data-science for discovery in chronic TBI
利用数据科学发现慢性 TBI
- 批准号:
10641318 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Leveraging data-science for discovery in chronic TBI
利用数据科学发现慢性 TBI
- 批准号:
10757109 - 财政年份:2018
- 资助金额:
-- - 项目类别:
相似海外基金
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
- 批准号:
10106704 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
- 批准号:
DP240100602 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
- 批准号:
MR/Y009657/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
- 批准号:
2409130 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
- 批准号:
23K22068 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)