RNA trafficking in mitochondria
线粒体中的RNA运输
基本信息
- 批准号:10318031
- 负责人:
- 金额:$ 31.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-01-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AlcoholsAllelesAreaAutoimmune DiseasesBAX geneBase PairingBindingBiogenesisBiological MarkersBiological ModelsBiologyCategoriesCellsCodeCritiquesCytosolDNADataDefectDevelopmentDiseaseDouble Stranded RNA VirusDouble-Stranded RNAEmbryoEnterobacteria phage P1 Cre recombinaseEnzymesEquipmentExoribonucleasesFibroblastsGenerationsGoalsGrantHealthHeart DiseasesHumanImmune responseImmunologyInfectionInfluentialsInheritedInnate Immune ResponseInnate Immune SystemInner mitochondrial membraneInterferon Type IIon ChannelJointsKnockout MiceKnowledgeLaboratoriesLeadLeigh DiseaseLipidsLiver diseasesLongitudinal StudiesMalignant NeoplasmsMammalian CellMass Spectrum AnalysisMediatingMembraneMitochondriaMitochondrial DNAMitochondrial DiseasesMitochondrial ProteinsMitochondrial RNAModelingMolecularMusMutationNeurodegenerative DisordersNuclearNucleic AcidsPaperPathologicPathway interactionsPatientsPatternPeptidesPhysiologicalPhysiologyPoint MutationPolyribonucleotide NucleotidyltransferaseProcessProteinsPublicationsPublishingRNARNA metabolismReagentResearchRestRoleSignal PathwaySignal TransductionSpecificityStressTestingTimeTrainingUntranslated RNAWorkbasebiological adaptation to stresscohortdeafnessexosomeextracellulargenetic deafnesshelicaseinnovationknock-downmitochondrial dysfunctionmitochondrial membranemouse modelmutantnervous system disordernovelpathogenprohibitinreceptorresponsesensortrafficking
项目摘要
SUMMARY
Mitochondria have numerous signaling pathways for conveying stress to the rest of a cell. Similar to
pathogens that release pathogen-associated molecular patterns (PAMPs), mitochondria release novel
damage-associated molecular patterns (DAMPs), including lipids, peptides, and mitochondrial DNA (mtDNA),
that indicate mitochondrial stress. Mitochondrial double-stranded RNA (mtdsRNA) is a new class of DAMPs
that is generated when the noncoding strand in mtRNA is not degraded efficiently and accumulates, allowing
base-pairing with the coding strand. Under normal conditions, the helicase SUV3 unwinds the mtRNAs and
polynucleotide phosphorylase (PNPase)ndegrades them. However, knockdown of SUV3 results in the
accumulation of mtdsRNAs within mitochondria, and knockdown of PNPase leads to the release of the
mtdsRNAs into the cytosol. Once in the cytosol, the mtdsRNAs are sensed by dsRNA sensors MDA5 and
RIG-I, leading to the induction of the type I interferon pathway. The export of mtdsRNA is likely important as
mtdsRNAs have been identified in the cytosol of patients with mutations in PNPT1, encoding PNPase, and in
diseases including cancer, cardiac disease, alcohol-associated liver disease, and autoimmune diseases.
The hypothesis that mtdsRNAs represent a new biomarker for mitochondrial dysfunction will be tested.
As this is a new pathway, there is a critical gap in understanding the molecular rules and mechanisms by which
mtdsRNAs cross the mitochondrial inner and outer membranes for cytosolic export. Our study goals are
contained within three independent, but thematically connected, specific aims. In Aim 1, mtdsRNAs that are
exported from mitochondria will be characterized with respect to size and sequence specificity. In addition,
RNA modifying enzymes will be tested to determine which components are essential for the generation of
mtdsRNAs. Aim 2 will focus on identification of outer and inner membrane channels and the role of PNPase in
the trafficking of mtdsRNAs out of mitochondria. The third aim will define physiologic parameters that lead to
the generation of mtdsRNAs and determination of the cytosolic dsRNA sensors that become activated during
this process. Because mutations in PNPase lead to mitochondrial disease, mutants will be characterized to
determine whether steps in the degradation and/or export of mtdsRNAs can be separated.
Our study team has been characterizing PNPase and its function in mitochondria extensively. Unique
model systems available for our work include a mouse model in which floxxed PNPT1 can be removed by the
Cre recombinase, and mouse embryonic fibroblasts derived from this model. Results from this proposal will
define the pathway for mtdsRNA trafficking out of mitochondria in detail and provide a platform for
understanding how mutations in PNPase contribute to disease. Long-term, these studies may lead to
establishing mtdsRNA as a new biomarker for mitochondrial dysfunction.
总结
线粒体有许多信号通路将压力传递到细胞的其余部分。类似于
病原体释放病原体相关分子模式(PAMPs),线粒体释放新的
损伤相关分子模式(DAMP),包括脂质、肽和线粒体DNA(mtDNA),
这表明线粒体压力。线粒体双链RNA(Mitochondrial double-stranded RNA,mtdsRNA)是一类新的DAMPs
当mtDNA中的非编码链不能有效降解并积累时,
与编码链配对。在正常条件下,解旋酶SUV 3解旋mtDNA,
多核苷酸磷酸化酶(PNIPs)降解它们。然而,SUV 3的击倒导致了
线粒体内mtdsRNAs的积累,而敲低PNTR导致线粒体内mtdsRNAs的释放。
线粒体双链RNA进入胞质溶胶。一旦在胞质溶胶中,mtdsRNA就被dsRNA传感器MDA 5和
RIG-I,导致I型干扰素途径的诱导。mtdsRNA的输出可能很重要,
已经在PNPT 1(编码PNPT 1)突变患者的胞浆中鉴定出mtdsRNA,
疾病,包括癌症、心脏病、酒精相关性肝病和自身免疫性疾病。
将检验mtdsRNA代表线粒体功能障碍的新生物标志物的假设。
由于这是一个新的途径,在理解分子规则和机制方面存在着关键的差距,
mtdsRNA穿过线粒体内膜和外膜用于胞质输出。我们的学习目标是
包含在三个独立但主题相关的具体目标中。在目标1中,
从线粒体输出的蛋白质将在大小和序列特异性方面进行表征。此外,本发明还提供了一种方法,
将对RNA修饰酶进行测试,以确定哪些成分对于产生
线粒体双链RNA目的2将集中于外膜和内膜通道的鉴定以及PNNI在细胞内的作用。
将线粒体双链RNA运输出线粒体。第三个目标将定义导致以下结果的生理参数:
线粒体双链RNA的产生和胞质双链RNA传感器的测定,
这个过程由于PNTR的突变导致线粒体疾病,突变体将被表征为
确定是否可以分离mtdsRNA降解和/或输出的步骤。
我们的研究小组一直在广泛地表征PNTR及其在线粒体中的功能。独特
可用于我们工作的模型系统包括小鼠模型,其中固定的PNPT 1可以通过
Cre重组酶,和来自该模型的小鼠胚胎成纤维细胞。该提案的结果将
详细定义线粒体双链RNA运输出线粒体的途径,
了解PNTR基因突变如何导致疾病。从长远来看,这些研究可能会导致
将mtdsRNA确定为线粒体功能障碍的新生物标志物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carla M Koehler其他文献
Carla M Koehler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carla M Koehler', 18)}}的其他基金
Control of calcium flux and mitochondrial fission by the Charcot Marie Tooth disease protein Mfn2.
腓骨肌萎缩症蛋白 Mfn2 对钙通量和线粒体裂变的控制。
- 批准号:
10322143 - 财政年份:2021
- 资助金额:
$ 31.03万 - 项目类别:
Control of calcium flux and mitochondrial fission by the Charcot Marie Tooth disease protein Mfn2.
腓骨肌萎缩症蛋白 Mfn2 对钙通量和线粒体裂变的控制。
- 批准号:
10154169 - 财政年份:2021
- 资助金额:
$ 31.03万 - 项目类别:
Control of calcium flux and mitochondrial fission by the Charcot Marie Tooth disease protein Mfn2.
腓骨肌萎缩症蛋白 Mfn2 对钙通量和线粒体裂变的控制。
- 批准号:
10540812 - 财政年份:2021
- 资助金额:
$ 31.03万 - 项目类别:
Mitochondrial calcium overload and necrosis in tauopathies caused by inhibition of Mfn2 and NCLX
抑制 Mfn2 和 NCLX 引起的 tau蛋白病中线粒体钙超载和坏死
- 批准号:
10714837 - 财政年份:2021
- 资助金额:
$ 31.03万 - 项目类别:
Small Molecule Probes to Correct AGT Mistargeting in Primary Hyperoxaluria 1
用于纠正原发性高草酸尿症中 AGT 误定位的小分子探针 1
- 批准号:
9304851 - 财政年份:2015
- 资助金额:
$ 31.03万 - 项目类别:
Small Molecule Probes to Correct AGT Mistargeting in Primary Hyperoxaluria 1
用于纠正原发性高草酸尿症中 AGT 误定位的小分子探针 1
- 批准号:
9130819 - 财政年份:2015
- 资助金额:
$ 31.03万 - 项目类别:
Small Molecule Probes to Correct AGT Mistargeting in Primary Hyperoxaluria 1
用于纠正原发性高草酸尿症中 AGT 误定位的小分子探针 1
- 批准号:
8913596 - 财政年份:2015
- 资助金额:
$ 31.03万 - 项目类别:
Small molecule modulators for mitochondrial protein import
用于线粒体蛋白质输入的小分子调节剂
- 批准号:
7694186 - 财政年份:2009
- 资助金额:
$ 31.03万 - 项目类别:
2007 Protein Transport Across Membranes Gordon Conference
2007 年蛋白质跨膜转运戈登会议
- 批准号:
7273965 - 财政年份:2007
- 资助金额:
$ 31.03万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 31.03万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 31.03万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 31.03万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 31.03万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 31.03万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 31.03万 - 项目类别:
Studentship
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 31.03万 - 项目类别:
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 31.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 31.03万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 31.03万 - 项目类别: