A system for long-term high-resolution 3D tracking of movement kinematics in freely behaving animals

用于对自由行为动物的运动学进行长期高分辨率 3D 跟踪的系统

基本信息

  • 批准号:
    10317118
  • 负责人:
  • 金额:
    $ 39.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-01-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY The aim of this proposal is to deliver an innovative and easy-to-use experimental platform for measuring and quantifying naturalistic behaviors of mammalian animal models used for biomedical research, including rodents and monkeys, across a range of spatial and temporal scales. This will require developing a method for tracking movements freely behaving animals with far higher spatiotemporal resolution and more kinematic detail than currently possible. To overcome the limitations of current technologies, a new solution is proposed that synergistically combines two methods - marker based motion capture and a video- based machine learning approach. First, using marker-based motion capture, the gold standard for 3D tracking in humans, the position of experimental subjects' head, trunk, and limbs will be tracked in 3D with submillimeter precision. An innovative marker design, placement strategy, and post-processing pipeline will ensure an unprecedentedly detailed description of rodent behavior over a large range of timescales. To make the system more efficient, robust, affordable and better suited for high-throughput longitudinal studies, the unprecedentedly rich and large 3D datasets generated by the motion capture experiments will be leveraged to train a deep neural network to predict pose and appendage positions from a set of 1-6 normal video cameras. To best capitalize on the large training datasets, the latest advances in convolutional neural networks for image analysis will be incorporated. Together, these advances will promote generalization of the high-resolution 3D tracking system to a variety of animals and environments, thus establishing a cheap, flexible, and easy-to use kinematic tracking method that can easily be scaled up and adopted by other labs. The large ground-truth datasets will allow the system to be benchmarked and compared against state-of-the art technologies in quantitative and rigorous ways. Preliminary studies have been very positive and suggest large improvements over current methods both when it comes to the range of behaviors that can be tracked and the precision with which they can be measured. Importantly, all new technology will be readily shared with the scientific community, thereby leveraging from this single grant the potential for numerous investigators to dramatically improve the efficiency of their research programs requiring rigorous quantitative descriptions of animal behavior.
项目概要 该提案的目的是提供一个创新且易于使用的实验平台来测量 并量化用于生物医学研究的哺乳动物模型的自然行为, 包括啮齿动物和猴子,跨越一系列空间和时间尺度。这将需要开发 一种以更高的时空分辨率追踪自由行为动物的运动的方法 比目前更多的运动细节。为了克服现有技术的局限性,一种新的 提出的解决方案协同结合了两种方法——基于标记的运动捕捉和视频- 基于机器学习的方法。首先,使用基于标记的动作捕捉,这是 3D 的黄金标准 在人体跟踪中,实验对象的头部、躯干和四肢的位置将通过 3D 方式进行跟踪 亚毫米精度。创新的标记设计、放置策略和后处理流程 将确保对大范围时间尺度上的啮齿动物行为进行前所未有的详细描述。到 使系统更加高效、稳健、价格实惠并且更适合高通量纵向 研究表明,动作捕捉实验生成的前所未有的丰富且庞大的 3D 数据集将 用于训练深度神经网络,从一组 1-6 个正常值中预测姿势和附肢位置 摄像机。为了最好地利用大型训练数据集,卷积神经网络的最新进展 将合并图像分析网络。这些进步共同将促进 高分辨率 3D 跟踪系统对各种动物和环境进行跟踪,从而建立了一种廉价、 灵活且易于使用的运动跟踪方法,可以轻松扩展并被其他实验室采用。 大型真实数据集将允许对系统进行基准测试并与最新状态进行比较 以定量和严格的方式研究艺术技术。初步研究非常积极并表明 在可跟踪的行为范围方面,比当前方法有很大改进 以及它们的测量精度。重要的是,所有新技术都将很容易共享 与科学界合作,从而利用这一单项资助的潜力 研究人员大幅提高其研究项目的效率,需要严格的 动物行为的定量描述。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bence P Olveczky其他文献

Bence P Olveczky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bence P Olveczky', 18)}}的其他基金

A system for long-term high-resolution 3D tracking of movement kinematics in freely behaving animals
用于对自由行为动物的运动学进行长期高分辨率 3D 跟踪的系统
  • 批准号:
    10543738
  • 财政年份:
    2021
  • 资助金额:
    $ 39.77万
  • 项目类别:
An easy-to-use software for 3D behavioral tracking from multi-view cameras
易于使用的软件,用于通过多视图摄像机进行 3D 行为跟踪
  • 批准号:
    10609129
  • 财政年份:
    2021
  • 资助金额:
    $ 39.77万
  • 项目类别:
Neural Circuits Underlying the Acquisition and Control of Motor Skills
运动技能获取和控制的神经回路
  • 批准号:
    10624878
  • 财政年份:
    2016
  • 资助金额:
    $ 39.77万
  • 项目类别:
Neural circuits underlying the acquisition and control of motor skills
运动技能获取和控制的神经回路
  • 批准号:
    9218242
  • 财政年份:
    2016
  • 资助金额:
    $ 39.77万
  • 项目类别:
Neural mechanisms underlying vocal learning in the songbird
鸣禽声音学习的神经机制
  • 批准号:
    8286998
  • 财政年份:
    2009
  • 资助金额:
    $ 39.77万
  • 项目类别:
Neural mechanisms underlying vocal learning in the songbird
鸣禽声音学习的神经机制
  • 批准号:
    8013664
  • 财政年份:
    2009
  • 资助金额:
    $ 39.77万
  • 项目类别:
Neural mechanisms underlying vocal learning in the songbird
鸣禽声音学习的神经机制
  • 批准号:
    8094414
  • 财政年份:
    2009
  • 资助金额:
    $ 39.77万
  • 项目类别:
Neural mechanisms underlying vocal learning in the songbird
鸣禽声音学习的神经机制
  • 批准号:
    7730820
  • 财政年份:
    2009
  • 资助金额:
    $ 39.77万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 39.77万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 39.77万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.77万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.77万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 39.77万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.77万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 39.77万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 39.77万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 39.77万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.77万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了