A system for long-term high-resolution 3D tracking of movement kinematics in freely behaving animals

用于对自由行为动物的运动学进行长期高分辨率 3D 跟踪的系统

基本信息

  • 批准号:
    10543738
  • 负责人:
  • 金额:
    $ 39.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-01-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY The aim of this proposal is to deliver an innovative and easy-to-use experimental platform for measuring and quantifying naturalistic behaviors of mammalian animal models used for biomedical research, including rodents and monkeys, across a range of spatial and temporal scales. This will require developing a method for tracking movements freely behaving animals with far higher spatiotemporal resolution and more kinematic detail than currently possible. To overcome the limitations of current technologies, a new solution is proposed that synergistically combines two methods - marker based motion capture and a video- based machine learning approach. First, using marker-based motion capture, the gold standard for 3D tracking in humans, the position of experimental subjects' head, trunk, and limbs will be tracked in 3D with submillimeter precision. An innovative marker design, placement strategy, and post-processing pipeline will ensure an unprecedentedly detailed description of rodent behavior over a large range of timescales. To make the system more efficient, robust, affordable and better suited for high-throughput longitudinal studies, the unprecedentedly rich and large 3D datasets generated by the motion capture experiments will be leveraged to train a deep neural network to predict pose and appendage positions from a set of 1-6 normal video cameras. To best capitalize on the large training datasets, the latest advances in convolutional neural networks for image analysis will be incorporated. Together, these advances will promote generalization of the high-resolution 3D tracking system to a variety of animals and environments, thus establishing a cheap, flexible, and easy-to use kinematic tracking method that can easily be scaled up and adopted by other labs. The large ground-truth datasets will allow the system to be benchmarked and compared against state-of-the art technologies in quantitative and rigorous ways. Preliminary studies have been very positive and suggest large improvements over current methods both when it comes to the range of behaviors that can be tracked and the precision with which they can be measured. Importantly, all new technology will be readily shared with the scientific community, thereby leveraging from this single grant the potential for numerous investigators to dramatically improve the efficiency of their research programs requiring rigorous quantitative descriptions of animal behavior.
项目摘要 该提案的目的是提供一个创新和易于使用的实验平台,用于测量 以及量化用于生物医学研究的哺乳动物模型的自然行为, 包括啮齿类动物和猴子,跨越一系列空间和时间尺度。这将需要发展 一种用于以高得多的时空分辨率跟踪自由行为动物的运动的方法, 更多的运动学细节。为了克服现有技术的局限性, 提出了一种解决方案,该解决方案协同地结合了两种方法-基于标记的运动捕捉和视频, 基于机器学习的方法首先,使用基于标记的动作捕捉,这是3D的黄金标准, 在人体跟踪中,实验对象的头部,躯干和四肢的位置将在3D中被跟踪, 亚毫米精度创新的标记设计、放置策略和后处理管道 将确保在很大的时间范围内对啮齿动物行为进行前所未有的详细描述。到 使系统更加高效、稳健、经济实惠,更适合高通量纵向 研究,运动捕捉实验产生的前所未有的丰富和庞大的3D数据集将 利用深度神经网络来从一组1-6个法线预测姿势和附肢位置, 摄像机为了最好地利用大型训练数据集,卷积神经网络的最新进展 将纳入图像分析网络。总之,这些进步将促进 高分辨率的3D跟踪系统,以各种动物和环境,从而建立了一个便宜, 灵活且易于使用的运动学跟踪方法,可以轻松扩展并被其他实验室采用。 大型地面实况数据集将允许系统进行基准测试,并与最先进的 艺术技术在定量和严格的方式。初步研究结果非常积极, 与当前方法相比,无论是在可跟踪的行为范围方面, 以及它们的测量精度。重要的是,所有新技术都将随时共享 与科学界,从而利用这一单一的赠款的潜力, 研究人员大大提高他们的研究计划的效率,需要严格的 对动物行为的定量描述。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bence P Olveczky其他文献

Bence P Olveczky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bence P Olveczky', 18)}}的其他基金

An easy-to-use software for 3D behavioral tracking from multi-view cameras
易于使用的软件,用于通过多视图摄像机进行 3D 行为跟踪
  • 批准号:
    10609129
  • 财政年份:
    2021
  • 资助金额:
    $ 39.77万
  • 项目类别:
A system for long-term high-resolution 3D tracking of movement kinematics in freely behaving animals
用于对自由行为动物的运动学进行长期高分辨率 3D 跟踪的系统
  • 批准号:
    10317118
  • 财政年份:
    2021
  • 资助金额:
    $ 39.77万
  • 项目类别:
Neural Circuits Underlying the Acquisition and Control of Motor Skills
运动技能获取和控制的神经回路
  • 批准号:
    10624878
  • 财政年份:
    2016
  • 资助金额:
    $ 39.77万
  • 项目类别:
Neural circuits underlying the acquisition and control of motor skills
运动技能获取和控制的神经回路
  • 批准号:
    9218242
  • 财政年份:
    2016
  • 资助金额:
    $ 39.77万
  • 项目类别:
Neural mechanisms underlying vocal learning in the songbird
鸣禽声音学习的神经机制
  • 批准号:
    8286998
  • 财政年份:
    2009
  • 资助金额:
    $ 39.77万
  • 项目类别:
Neural mechanisms underlying vocal learning in the songbird
鸣禽声音学习的神经机制
  • 批准号:
    8013664
  • 财政年份:
    2009
  • 资助金额:
    $ 39.77万
  • 项目类别:
Neural mechanisms underlying vocal learning in the songbird
鸣禽声音学习的神经机制
  • 批准号:
    8094414
  • 财政年份:
    2009
  • 资助金额:
    $ 39.77万
  • 项目类别:
Neural mechanisms underlying vocal learning in the songbird
鸣禽声音学习的神经机制
  • 批准号:
    7730820
  • 财政年份:
    2009
  • 资助金额:
    $ 39.77万
  • 项目类别:

相似海外基金

EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
  • 批准号:
    NE/Y000080/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.77万
  • 项目类别:
    Research Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328975
  • 财政年份:
    2024
  • 资助金额:
    $ 39.77万
  • 项目类别:
    Continuing Grant
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
  • 批准号:
    2400967
  • 财政年份:
    2024
  • 资助金额:
    $ 39.77万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328973
  • 财政年份:
    2024
  • 资助金额:
    $ 39.77万
  • 项目类别:
    Continuing Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
  • 批准号:
    10112700
  • 财政年份:
    2024
  • 资助金额:
    $ 39.77万
  • 项目类别:
    Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328972
  • 财政年份:
    2024
  • 资助金额:
    $ 39.77万
  • 项目类别:
    Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
  • 批准号:
    2332916
  • 财政年份:
    2024
  • 资助金额:
    $ 39.77万
  • 项目类别:
    Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
  • 批准号:
    2332917
  • 财政年份:
    2024
  • 资助金额:
    $ 39.77万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328974
  • 财政年份:
    2024
  • 资助金额:
    $ 39.77万
  • 项目类别:
    Continuing Grant
Study of the Particle Acceleration and Transport in PWN through X-ray Spectro-polarimetry and GeV Gamma-ray Observtions
通过 X 射线光谱偏振法和 GeV 伽马射线观测研究 PWN 中的粒子加速和输运
  • 批准号:
    23H01186
  • 财政年份:
    2023
  • 资助金额:
    $ 39.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了