Development of a Machine Learning Model to Integrate Clinical, Laboratory, Sonographic, and Elastographic Data for Noninvasive Liver Tissue Characterization in NAFLD
开发机器学习模型来整合临床、实验室、超声和弹性成像数据,用于 NAFLD 的无创性肝组织表征
基本信息
- 批准号:10321558
- 负责人:
- 金额:$ 44.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-20 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:Algorithmic AnalysisAreaBiopsyBlood TestsCaringCirrhosisClinicalClinical DataClinical TrialsCustomDataDatabasesDetectionDevelopmentDiagnosisDiagnosticDiseaseDisease OutcomeEvaluationGoalsImageImage AnalysisImageryIndividualInterobserver VariabilityLaboratoriesLiverLiver FibrosisLiver diseasesMagnetic Resonance ImagingMeasuresMedicalMethodsModelingOutcomePathologyPatient RecruitmentsPatientsPerformancePersonsPharmaceutical PreparationsPhase II/III TrialPopulationPrevalencePrimary carcinoma of the liver cellsProspective cohortQuality of CareROC CurveReference StandardsResearchRiskRunningScheduleSensitivity and SpecificityStagingSymptomsTechniquesTechnologyTest ResultTestingTextureTherapeuticTherapeutic AgentsTherapeutic Clinical TrialTimeTissuesUltrasonographyUnited StatesValidationWorkbasechronic liver diseaseclinical carecostdiagnostic technologiesdiagnostic tooldisorder subtypeelastographyend stage liver diseasehepatocellular injuryhigh riskimage processingimprovedliver biopsyliver imagingliver injurymachine learning modelnon-alcoholic fatty liver diseasenonalcoholic steatohepatitisnoninvasive diagnosispatient populationpredictive modelingprospectiverecruitrisk stratificationscreeningstandard of caretoolultrasound
项目摘要
Abstract
Non-alcoholic fatty liver disease (NAFLD) is exceptionally common, with an estimated one hundred million
afflicted people in the United States. Detection and risk stratification of this very common disease remains a
major challenge. Despite recent advances, including development of numerous therapeutic agents presently in
phase 2 and 3 trials, NAFLD remains a silent disease in which the vast majority of patients accumulate
progressive liver damage without signs or symptoms and, undiagnosed, receive no medical care. The NAFLD
patients at highest risk of cirrhosis are those with moderate or greater liver fibrosis at the time of diagnosis, a
group of patients who are described as having high risk non-alcoholic steatohepatitis (hrNASH). The current
reference standard for identifying people with hrNASH is liver biopsy, which is expensive, invasive, and limited
by interobserver variability. The focus of this project is to develop and validate low cost non-invasive diagnostic
technology to diagnose hrNASH. We propose to accomplish this in three Specific Aims. First, we will expand
and annotate an existing database of patients with chronic liver disease from 328 subjects to 1,000 subjects,
~40% of whom will have NAFLD. The database will contain ~20,000 images (~10,000 ultrasound elastography
images and ~ 10,000 conventional ultrasound images) and multiple demographic and clinical data points for
each subject (a total of ~30,000 clinical, laboratory, and demographic data points). We have previously
developed advanced image processing techniques to make ultrasound elastography more accurate and less
variable. We will use this large database to develop, customize and refine our image processing techniques for
NAFLD evaluation (Aim 1), with the goal of improving ultrasound elastography diagnosis of hrNASH. Second,
we will combine conventional ultrasound elastography imaging, conventional ultrasound imaging, our advanced
image analysis techniques, and the demographic, clinical, and laboratory data in a machine learning model to
predict hrNASH and will compare the performance of our predictive model with the FIB4, a widely-used blood
test-based prediction rule (Aim 2). Third, we will validate our predictive model in an independent prospective
cohort of NAFLD subjects undergoing biopsy for NAFLD risk stratification (Aim 3). We hypothesize that the
combination of image processing-enhanced elastography and conventional ultrasound imagery combined with
demographic, clinical, and laboratory data will have greater predictive power for hrNASH than clinical or
sonographic data alone. The proposed predictive models have the potential to (1) reduce the number of liver
biopsies performed for hrNASH detection, (2) facilitate recruitment for clinical trials of NAFLD therapeutics, and
(3) improve care quality for the most common liver disease in the United States.
抽象的
非酒精性脂肪肝病 (NAFLD) 非常常见,估计有一亿人
美国受灾人民。这种非常常见的疾病的检测和风险分层仍然是一个难题
重大挑战。尽管最近取得了进展,包括目前许多治疗药物的开发
在 2 期和 3 期试验中,NAFLD 仍然是一种沉默的疾病,绝大多数患者都在这种疾病中积累
进行性肝损伤,没有体征或症状,并且未经诊断,不接受医疗护理。非酒精性脂肪肝病
肝硬化风险最高的患者是那些在诊断时患有中度或重度肝纤维化的患者,
一组被描述为患有高危非酒精性脂肪性肝炎 (hrNASH) 的患者。目前的
识别 hrNASH 患者的参考标准是肝活检,该方法昂贵、侵入性且有限
通过观察者间的变异性。该项目的重点是开发和验证低成本非侵入性诊断
诊断 hrNASH 的技术。我们建议通过三个具体目标来实现这一目标。首先,我们将扩展
并对现有的慢性肝病患者数据库进行注释,从 328 名受试者到 1,000 名受试者,
其中约 40% 的人患有 NAFLD。该数据库将包含约 20,000 张图像(约 10,000 张超声弹性成像
图像和约 10,000 个常规超声图像)以及多个人口统计和临床数据点
每个受试者(总共约 30,000 个临床、实验室和人口统计数据点)。我们之前有过
开发了先进的图像处理技术,使超声弹性成像更加准确、更少
多变的。我们将使用这个大型数据库来开发、定制和完善我们的图像处理技术
NAFLD 评估(目标 1),目标是改进 hrNASH 的超声弹性成像诊断。第二,
我们将结合传统的超声弹性成像、传统的超声成像、我们先进的
图像分析技术以及机器学习模型中的人口统计、临床和实验室数据
预测 hrNASH 并将我们的预测模型的性能与 FIB4(一种广泛使用的血液)进行比较
基于测试的预测规则(目标 2)。第三,我们将在独立的前瞻性中验证我们的预测模型
接受活检以进行 NAFLD 风险分层的 NAFLD 受试者队列(目标 3)。我们假设
图像处理增强弹性成像与传统超声图像的结合
人口统计、临床和实验室数据对 hrNASH 的预测能力比临床或实验室数据更强
仅超声数据。所提出的预测模型有可能(1)减少肝脏数量
用于 hrNASH 检测的活检,(2) 促进 NAFLD 治疗临床试验的招募,以及
(3) 提高美国最常见肝病的护理质量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anthony Edward Samir其他文献
Anthony Edward Samir的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anthony Edward Samir', 18)}}的其他基金
Development of a Machine Learning Model to Integrate Clinical, Laboratory, Sonographic, and Elastographic Data for Noninvasive Liver Tissue Characterization in NAFLD
开发机器学习模型来整合临床、实验室、超声和弹性成像数据,用于 NAFLD 的无创性肝组织表征
- 批准号:
10542745 - 财政年份:2019
- 资助金额:
$ 44.84万 - 项目类别:
Reducing Variability in Hepatic Shear Wave Elastography
减少肝脏剪切波弹性成像的变异性
- 批准号:
9109220 - 财政年份:2016
- 资助金额:
$ 44.84万 - 项目类别:
Reducing Variability in Hepatic Shear Wave Elastography
减少肝脏剪切波弹性成像的变异性
- 批准号:
9269212 - 财政年份:2016
- 资助金额:
$ 44.84万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
- 批准号:
2322614 - 财政年份:2024
- 资助金额:
$ 44.84万 - 项目类别:
Standard Grant
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
- 批准号:
ES/Z50290X/1 - 财政年份:2024
- 资助金额:
$ 44.84万 - 项目类别:
Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
- 批准号:
NE/Y003365/1 - 财政年份:2024
- 资助金额:
$ 44.84万 - 项目类别:
Research Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
- 批准号:
534092360 - 财政年份:2024
- 资助金额:
$ 44.84万 - 项目类别:
Major Research Instrumentation
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 44.84万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 44.84万 - 项目类别:
Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
- 批准号:
24K20765 - 财政年份:2024
- 资助金额:
$ 44.84万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 44.84万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: OPP-PRF: Tracking Long-Term Changes in Lake Area across the Arctic
博士后奖学金:OPP-PRF:追踪北极地区湖泊面积的长期变化
- 批准号:
2317873 - 财政年份:2024
- 资助金额:
$ 44.84万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 44.84万 - 项目类别:
Standard Grant