Sociomarkers to Predict Asthma Control and Emergency Room Visits (SPACER)
预测哮喘控制和急诊室就诊的社会标记 (SPACER)
基本信息
- 批准号:10328904
- 负责人:
- 金额:$ 16.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-15 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AdultAsthmaAwardCaringChildClassificationClinicalComputer ModelsContinuity of Patient CareDataData SetDemographic FactorsDevelopmentEarly identificationEmergency department visitEnrollmentEnvironmentEnvironmental Risk FactorEvidence based interventionFaceFamilyFinancial HardshipFoundationsFutureGoalsHealth InsuranceHealth ServicesHealthcareIncentivesIndividualInterventionInvestmentsK-Series Research Career ProgramsLearningLinkLow incomeMachine LearningMeasuresMediatingMedicaidMedicineMentorsMethodsModalityModelingMorbidity - disease rateOutcomePatient Self-ReportPatientsPersonsPharmaceutical PreparationsPhysiciansPopulationPositioning AttributePrivatizationPublic PolicyResearchResearch PersonnelResourcesRiskRisk FactorsSeverity of illnessSocioeconomic FactorsSurveysTimeasthma exacerbationbasecare seekingclinical riskcostdisparities in morbidityexperiencefood insecurityhealth planhealth recordhigh riskhousing instabilityimprovedmachine learning modelmedical schoolsmedication compliancenetwork modelspredictive modelingpreventprogramsrandom forestrelative costrisk predictionrisk prediction modelskillssocialsocioeconomic disparity
项目摘要
PROJECT ABSTRACT
Asthma impacts more than 25 million adults and children in the U.S. with high associated morbidity and
socioeconomic disparities in outcomes. Because effective medications are available to treat and prevent
exacerbations of asthma and evidence-based interventions exist to mitigate the impact of harmful
socioeconomic factors, early identification of those at highest risk is crucial. However, efforts to predict future
exacerbations of asthma have yielded modest results with infrequent inclusion of comprehensive information
on social hardships, such as food insecurity and housing instability, or financial hardships, such as difficulty
affording the costs of controller medications which is particularly relevant for those with private health
insurance. Identifying social and financial hardships requires broad-based screenings which are resource
intensive, difficult to implement in clinical settings and often incomplete or limited to care seeking populations.
Further, few asthma risk prediction modalities incorporate time-variable (temporal) data on important social,
clinical, and environmental factors. Machine learning, an advanced computational approach to risk prediction,
has great potential to improve upon conventional approaches to risk prediction of asthma exacerbations
through indirect estimation of social hardships and inclusion of temporal risk factors. Implementation of
enhanced asthma risk-prediction models in a health plan setting offers distinct advantages due to existing
investments in asthma care management and access to timely claims data across the full care continuum.
Accordingly, the aims of the SPACER study (Sociomarkers to Predict Asthma Control and Emergency Room
visits) are 1) To describe social and financial hardships in privately insured adults and children with asthma,
and association with medication adherence and exacerbations, 2) To indirectly estimate self-reported social
and financial hardships using routinely collected health plan and spatial data, and 3) To develop and validate a
machine learning network model, incorporating temporal sociomarker, clinical, and environmental data, to
predict asthma exacerbations in a health plan setting. The research leverages the unique research
environment of the Department of Population Medicine, an academic research department of Harvard Medical
School, situated in a regional non-profit health plan, Harvard Pilgrim Health Care. The mentored career
development award will support Dr. Alon Peltz, a physician and health services researcher, in developing
expertise in machine learning modeling and use of social data to improve prediction of adverse clinical
outcomes.
项目摘要
在美国,哮喘影响超过2500万成人和儿童,具有高相关发病率,
结果的社会经济差异。因为有有效的药物可以治疗和预防
哮喘恶化和循证干预措施存在,以减轻有害的影响,
由于社会经济因素的影响,早期识别那些处于最高风险的人至关重要。然而,预测未来的努力
哮喘急性发作产生了适度的结果,很少纳入全面的信息
社会困难,如粮食无保障和住房不稳定,或经济困难,如
支付控制药物的费用,这对那些有私人健康状况的人尤其重要
保险确定社会和经济困难需要基础广泛的筛查,
密集,难以在临床环境中实施,并且通常不完整或仅限于寻求护理的人群。
此外,很少有哮喘风险预测模式包含关于重要的社会,
临床和环境因素。机器学习是一种先进的风险预测计算方法,
有很大的潜力来改善传统的方法来预测哮喘急性发作的风险
通过间接估计社会困难和纳入时间风险因素。执行
在健康计划设置中增强的哮喘风险预测模型提供了明显的优势,
投资于哮喘护理管理,并在整个护理过程中及时获得索赔数据。
因此,SPACER研究的目的(预测哮喘控制和急诊室的社会标志物)
访问)是1)描述私人保险的成人和儿童哮喘患者的社会和经济困难,
以及与药物依从性和病情加重的相关性,2)间接估计自我报告的社会
和财政困难,使用定期收集的健康计划和空间数据,和3)开发和验证一个
机器学习网络模型,结合时间社会标记,临床和环境数据,
在健康计划中预测哮喘恶化。这项研究利用了独特的研究
人口医学系是哈佛医学院的一个学术研究部门,
学校,坐落在一个区域性的非营利健康计划,哈佛朝圣者医疗保健。指导的职业生涯
发展奖将支持阿隆佩尔茨博士,医生和卫生服务研究员,在发展
机器学习建模和使用社会数据的专业知识,以改善不良临床预测
结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alon Peltz其他文献
Alon Peltz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alon Peltz', 18)}}的其他基金
Sociomarkers to Predict Asthma Control and Emergency Room Visits (SPACER)
预测哮喘控制和急诊室就诊的社会标记 (SPACER)
- 批准号:
10534672 - 财政年份:2021
- 资助金额:
$ 16.93万 - 项目类别:
相似海外基金
Midcareer Investigator Award in Patient-Oriented Research in Pediatric Asthma
以患者为导向的小儿哮喘研究中职业生涯研究者奖
- 批准号:
10512564 - 财政年份:2019
- 资助金额:
$ 16.93万 - 项目类别:
Midcareer Investigator Award in Patient-Oriented Research in Pediatric Asthma
以患者为导向的小儿哮喘研究中职业生涯研究者奖
- 批准号:
10533384 - 财政年份:2019
- 资助金额:
$ 16.93万 - 项目类别:
Midcareer Investigator Award in Patient-Oriented Research in Pediatric Asthma
以患者为导向的小儿哮喘研究中职业生涯研究者奖
- 批准号:
10064017 - 财政年份:2019
- 资助金额:
$ 16.93万 - 项目类别:
K24: Midcareer Investigator Award: Urban School Allergen Exposure and Childhood Asthma
K24:职业生涯中期研究员奖:城市学校过敏原暴露和儿童哮喘
- 批准号:
9920076 - 财政年份:2013
- 资助金额:
$ 16.93万 - 项目类别:
K24: Midcareer Investigator Award: Urban School Allergen Exposure and Childhood Asthma
K24:职业生涯中期研究员奖:城市学校过敏原暴露和儿童哮喘
- 批准号:
10395502 - 财政年份:2013
- 资助金额:
$ 16.93万 - 项目类别:
Midcareer Investigator Patient-oriented Research Award in Bronchiolitis & Asthma
职业生涯中期研究员毛细支气管炎患者导向研究奖
- 批准号:
8128205 - 财政年份:2010
- 资助金额:
$ 16.93万 - 项目类别:
Midcareer Investigator Patient-oriented Research Award in Bronchiolitis & Asthma
职业生涯中期研究员毛细支气管炎患者导向研究奖
- 批准号:
7919695 - 财政年份:2009
- 资助金额:
$ 16.93万 - 项目类别:
Midcareer Investigator Patient-oriented Research Award in Bronchiolitis & Asthma
职业生涯中期研究员毛细支气管炎患者导向研究奖
- 批准号:
7451393 - 财政年份:2008
- 资助金额:
$ 16.93万 - 项目类别:
Midcareer Investigator Patient-oriented Research Award in Bronchiolitis & Asthma
职业生涯中期研究员毛细支气管炎患者导向研究奖
- 批准号:
8443115 - 财政年份:2008
- 资助金额:
$ 16.93万 - 项目类别:
Midcareer Investigator Patient-oriented Research Award in Bronchiolitis & Asthma
职业生涯中期研究员毛细支气管炎患者导向研究奖
- 批准号:
8217065 - 财政年份:2008
- 资助金额:
$ 16.93万 - 项目类别: