Mechanisms of Fungal Iron Regulation and Thiol Redox Metabolism
真菌铁调节和硫醇氧化还原代谢的机制
基本信息
- 批准号:10330661
- 负责人:
- 金额:$ 43.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-05-10 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:AerobicAffinityAntioxidantsBindingBinding ProteinsBiochemicalBiochemical PathwayBiogenesisBiological AvailabilityCandida albicansCandida glabrataCellsCellular biologyCoupledCysteineDNA BindingDNA-Protein InteractionDisulfidesEnvironmentEnzymesEquilibriumFission YeastGeneticGlutathioneGlutathione DisulfideGoalsHomeostasisHumanImpairmentIn VitroInterdisciplinary StudyIronMeasurementMeasuresMetabolismMetalsMicrobeMolecularMolecular GeneticsMonitorMycosesOrganismOxidation-ReductionOxidative StressPathogenicityPathway interactionsPopulationPropertyProteinsReactionReactive Oxygen SpeciesRegulationRoleSaccharomyces cerevisiaeSignal TransductionSpectrum AnalysisSulfhydryl CompoundsSulfurSystemTechniquesTestingWorkX-Ray CrystallographyYeastsabsorptionbiophysical analysisbiophysical techniquescell injurycofactorcombatdesignglutaredoxinin vivoinnovationmetal metabolismprogramsprotein functionresponsesensortraffickingtranscription factoruptake
项目摘要
PROJECT SUMMARY
Iron and thiol redox homeostasis have interdependent roles in cellular metabolism. Iron serves as a cofactor for
a wide variety of proteins and enzymes in essential biochemical pathways, but excess iron can be damaging to
cells by catalyzing formation of reactive oxygen species that disrupt thiol redox homeostasis. Intracellular thiol-
disulfide balance is critical, in turn, for the activity of proteins with functionally important cysteine residues, which
includes many Fe-binding proteins. The tripeptide glutathione (GSH) and glutaredoxin (Grx) proteins function
together in both thiol redox control and iron homeostasis by facilitating redox reactions and participating in iron-
sulfur (Fe-S) cluster biogenesis pathways. Our previous work in the non-pathogenic yeast S. cerevisiae and S.
pombe have revealed the molecular mechanisms by which a subclass of Grxs, known as monothiol Grxs, bind
and deliver GSH-ligated Fe-S clusters to communicate iron bioavailability to the transcription factors Aft1/Aft2 in
S. cerevisiae and Php4 in S. pombe that regulate iron acquisition and utilization pathways. Furthermore, we have
used molecular genetics and cell biology approaches coupled with in vivo redox measurements via genetically-
encoded fluorescent redox sensors to characterize GSH subcellular trafficking pathways that impact both iron
homeostasis and redox regulation in S. cerevisiae. Here we will extend these findings by studying the impact of
GSH and Grxs on the Fe-S binding properties and DNA binding affinity of the S. pombe transcription factor Fep1
that represses Fe uptake pathways during iron repletion. Furthermore, we will define the molecular details of iron
regulation pathways in pathogenic yeast (Candida glabrata, Candida albicans) that express homologs of
monothiol Grxs, Aft1/2, Fep1, and Php4, but for which little mechanistic information is available. In parallel, we
will characterize GSH:GSSG flux between subcellular compartments in yeast cells and measure the impact of
GSH deficiency, excess, or impaired trafficking on essential metal metabolism. Our innovative approach to
accomplish these goals is to combine yeast molecular genetics and cell biology techniques with biochemical,
structural, and biophysical methods (UV-visible absorption and CD spectroscopy, EXAFS, X-ray crystallography,
Mössbauer, EPR, and single cell ICP-TOF-MS). The in vitro biochemical, structural, and biophysical studies will
be used to probe protein-protein, metal-protein, and protein-DNA interactions in iron sensing pathways to
uncover the molecular details of iron signaling and to monitor single cell metallomic changes in yeast populations
in response to alterations in iron or GSH metabolism. The genetics and cell biology studies test how these
molecular interactions and metallome changes influence the in vivo functions and dynamic localization of iron
signaling and GSH metabolism factors. Overall, this multidisciplinary research program is designed to tease out
the mechanistic details of iron regulation and subcellular thiol redox control at the cellular and molecular level.
By studying both pathogenic and non-pathogenic fungi we will compare and contrast different strategies for
adapting to redox perturbations and high/low iron environments.
项目总结
铁和硫醇氧化还原动态平衡在细胞代谢中具有相互依赖的作用。铁是影响人体健康的一个辅因
在基本的生化途径中有各种各样的蛋白质和酶,但过量的铁可能会对
通过催化形成破坏硫醇氧化还原动态平衡的活性氧物种。胞内硫醇-
反过来,二硫键平衡对于具有重要功能的半胱氨酸残基的蛋白质的活性是至关重要的,这
包括许多铁结合蛋白。三肽谷胱甘肽(GSH)和谷氧还蛋白(GRX)的功能
通过促进氧化还原反应和参与铁平衡,在硫醇氧化还原控制和铁的动态平衡中共同作用.
硫(铁-S)聚集型生物发生途径。我们之前在非致病酵母S.cerevisiae和S.
Pombe已经揭示了Grxs的一个亚类,即单硫醇Grxs结合的分子机制
并将谷胱甘肽连接的铁-S簇传递给转录因子Aft1/Aft2。
S.cerevisiae和Php4调控铁的获取和利用途径。此外,我们还拥有
使用分子遗传学和细胞生物学方法,结合体内氧化还原测量,通过遗传学-
编码的荧光氧化还原传感器用于表征影响两种铁的GSH亚细胞转运途径
酿酒酵母的动态平衡和氧化还原调节。在这里,我们将通过研究以下影响来扩展这些发现
谷胱甘肽和谷胱甘肽对庞氏链霉菌转录因子Fep1铁-S结合特性和亲和力的影响
这抑制了铁补充过程中的铁吸收途径。此外,我们还将定义铁的分子细节
致病酵母(光滑假丝酵母菌、白色念珠菌)表达同源蛋白的调控途径
单硫醇Grxs、Aft1/2、Fep1和Php4,但其机理信息很少。同时,我们
将表征酵母细胞亚细胞间的GSH:GSSG通量,并测量
谷胱甘肽缺乏、过剩或损害对必需金属代谢的运输。我们的创新方法
实现这些目标的关键是将酵母分子遗传学和细胞生物学技术与生化、
结构和生物物理方法(紫外可见吸收和CD光谱、EXAFS、X射线结晶学、
穆斯堡尔、EPR和单细胞电感耦合等离子体质谱(ICPAF-MS)。体外生化、结构和生物物理研究将
用于探测铁感应通路中蛋白质-蛋白质、金属-蛋白质和蛋白质-DNA的相互作用
揭示铁信号的分子细节并监测酵母种群中单细胞金属组的变化
对铁或谷胱甘肽代谢变化的反应。遗传学和细胞生物学研究测试了这些
分子相互作用和金属组学变化影响铁的体内功能和动态定位
信号和谷胱甘肽代谢因子。总体而言,这个多学科研究项目旨在梳理出
在细胞和分子水平上铁调节和亚细胞硫醇氧化还原控制的机制细节。
通过对致病真菌和非致病真菌的研究,我们将比较和对比不同的策略
适应氧化还原扰动和高铁/低铁环境。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Caryn E Outten其他文献
Caryn E Outten的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Caryn E Outten', 18)}}的其他基金
2021 Cell Biology of Metals Gordon Research Conference and Seminar
2021金属细胞生物学戈登研究会议暨研讨会
- 批准号:
10310641 - 财政年份:2021
- 资助金额:
$ 43.53万 - 项目类别:
Mechanisms of Iron and Thiol Redox Regulation in Yeast
酵母中铁和硫醇氧化还原调节机制
- 批准号:
9916760 - 财政年份:2016
- 资助金额:
$ 43.53万 - 项目类别:
Mechanisms of Fungal Iron Regulation and Thiol Redox Metabolism
真菌铁调节和硫醇氧化还原代谢的机制
- 批准号:
10795144 - 财政年份:2016
- 资助金额:
$ 43.53万 - 项目类别:
Mechanisms of Fungal Iron Regulation and Thiol Redox Metabolism
真菌铁调节和硫醇氧化还原代谢的机制
- 批准号:
10544771 - 财政年份:2016
- 资助金额:
$ 43.53万 - 项目类别:
FASEB SRC on TRACE ELEMENTS IN BIOLOGY AND MEDICINE
FASEB SRC 关于生物学和医学中的微量元素
- 批准号:
8718646 - 财政年份:2014
- 资助金额:
$ 43.53万 - 项目类别:
Glutathione and Redox Control in the Mitochondrial Intermembrane Space
线粒体膜间空间中的谷胱甘肽和氧化还原控制
- 批准号:
8601188 - 财政年份:2010
- 资助金额:
$ 43.53万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 43.53万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 43.53万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 43.53万 - 项目类别:
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 43.53万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 43.53万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 43.53万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 43.53万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 43.53万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 43.53万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 43.53万 - 项目类别:
Continuing Grant














{{item.name}}会员




