Mechanisms of Iron and Thiol Redox Regulation in Yeast

酵母中铁和硫醇氧化还原调节机制

基本信息

项目摘要

 DESCRIPTION (provided by applicant): Iron and thiol redox homeostasis are intimately connected in cellular metabolism. Iron is an essential cofactor for proteins and enzymes in numerous biochemical pathways, but when left unchecked, excess iron catalyzes formation of reactive oxygen species (ROS) that disrupt thiol redox homeostasis. Intracellular thiol-disulfide balance is critical, in turn, for the activity of proteins with functionally important cysteine residues, which includes many Fe-binding enzymes. Thus, iron homeostasis and maintenance of thiol-disulfide balance are mutually dependent processes that are critical for cell survival. Th tripeptide glutathione (GSH) and glutaredoxin (Grx) proteins function together in both thiol redox control and iron homeostasis by catalyzing thiol-disulfide exchange reactions and participating in Fe-S cluster biogenesis pathways. Maintenance of GSH and iron homeostasis in the mitochondrion is especially important since this organelle is the primary site for Fe- S cluster and heme biogenesis, as well as the main source and target of ROS production. However, there are significant gaps in understanding both iron regulation mechanisms and mitochondrial thiol redox control pathways at the cellular and molecular level that require further study. The long term goals of this research program are: (1) to identify the mechanisms for maintaining adequate intracellular levels of the essential metal iron, and (2) to characterize intracellular factors that control mitochondrial thiol redox balance and GSH flux between subcellular compartments. Providing mechanistic insight into these critical cellular functions is essential for preventing and treating diseases of iron overload, oxidative stress, and mitochondrial redox imbalance. For the iron regulation project, the innovative approach to accomplish these goals is to use a combination of protein biochemistry, mutagenesis, yeast genetics and cell biology, and biophysical methods (UV-visible absorption, CD, resonance Raman, EXAFS, Mössbauer, EPR, NMR spectroscopy, SAXS, and X-ray crystallography). The in vitro biochemical and biophysical studies will probe protein-protein, metal-protein, and protein-DNA interactions in iron sensing pathways to uncover the molecular details of iron signaling, while the genetics and cell biology studies test how these molecular interactions influence the in vivo functions and dynamic localization of iron signaling factors. For the mitochondrial redox project, a molecular genetics approach will be used to manipulate gene expression and protein localization, coupled with in vivo thiol redox measurements using targeted GFP-based redox sensors, to identify factors that influence thiol-disulfide balance and control GSH flux between subcellular compartments. Both projects exploit yeast model systems since these simple eukaryotes are easy to maintain and genetically manipulate in the lab, yet expresses many of the same redox and metal homeostasis systems as human cells. Overall, this multidisciplinary research program is designed to tease out the mechanistic details of both iron regulation and subcellular thiol redox control at the cellular and molecular level.


项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Caryn E Outten其他文献

Caryn E Outten的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Caryn E Outten', 18)}}的其他基金

2021 Cell Biology of Metals Gordon Research Conference and Seminar
2021金属细胞生物学戈登研究会议暨研讨会
  • 批准号:
    10310641
  • 财政年份:
    2021
  • 资助金额:
    $ 42.68万
  • 项目类别:
Mechanisms of Fungal Iron Regulation and Thiol Redox Metabolism
真菌铁调节和硫醇氧化还原代谢的机制
  • 批准号:
    10330661
  • 财政年份:
    2016
  • 资助金额:
    $ 42.68万
  • 项目类别:
Mechanisms of Fungal Iron Regulation and Thiol Redox Metabolism
真菌铁调节和硫醇氧化还原代谢的机制
  • 批准号:
    10795144
  • 财政年份:
    2016
  • 资助金额:
    $ 42.68万
  • 项目类别:
Mechanisms of Fungal Iron Regulation and Thiol Redox Metabolism
真菌铁调节和硫醇氧化还原代谢的机制
  • 批准号:
    10544771
  • 财政年份:
    2016
  • 资助金额:
    $ 42.68万
  • 项目类别:
FASEB SRC on TRACE ELEMENTS IN BIOLOGY AND MEDICINE
FASEB SRC 关于生物学和医学中的微量元素
  • 批准号:
    8718646
  • 财政年份:
    2014
  • 资助金额:
    $ 42.68万
  • 项目类别:
Mechanistic Studies of Iron Regulation in Yeast
酵母铁调节机制研究
  • 批准号:
    8372763
  • 财政年份:
    2012
  • 资助金额:
    $ 42.68万
  • 项目类别:
Mechanistic Studies of Iron Regulation in Yeast
酵母铁调节机制研究
  • 批准号:
    8840971
  • 财政年份:
    2012
  • 资助金额:
    $ 42.68万
  • 项目类别:
Mechanistic Studies of Iron Regulation in Yeast
酵母铁调节机制研究
  • 批准号:
    8517147
  • 财政年份:
    2012
  • 资助金额:
    $ 42.68万
  • 项目类别:
Mechanistic Studies of Iron Regulation in Yeast
酵母铁调节机制研究
  • 批准号:
    8656714
  • 财政年份:
    2012
  • 资助金额:
    $ 42.68万
  • 项目类别:
Glutathione and Redox Control in the Mitochondrial Intermembrane Space
线粒体膜间空间中的谷胱甘肽和氧化还原控制
  • 批准号:
    8601188
  • 财政年份:
    2010
  • 资助金额:
    $ 42.68万
  • 项目类别:

相似海外基金

CAREER: Biochemical and Structural Mechanisms Controlling tRNA-Modifying Metalloenzymes
职业:控制 tRNA 修饰金属酶的生化和结构机制
  • 批准号:
    2339759
  • 财政年份:
    2024
  • 资助金额:
    $ 42.68万
  • 项目类别:
    Continuing Grant
Systematic manipulation of tau protein aggregation: bridging biochemical and pathological properties
tau 蛋白聚集的系统操作:桥接生化和病理特性
  • 批准号:
    479334
  • 财政年份:
    2023
  • 资助金额:
    $ 42.68万
  • 项目类别:
    Operating Grants
Diurnal environmental adaptation via circadian transcriptional control based on a biochemical oscillator
基于生化振荡器的昼夜节律转录控制的昼夜环境适应
  • 批准号:
    23H02481
  • 财政年份:
    2023
  • 资助金额:
    $ 42.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Leveraging releasable aryl diazonium ions to probe biochemical systems
利用可释放的芳基重氮离子探测生化系统
  • 批准号:
    2320160
  • 财政年份:
    2023
  • 资助金额:
    $ 42.68万
  • 项目类别:
    Standard Grant
Biochemical Mechanisms for Sustained Humoral Immunity
持续体液免疫的生化机制
  • 批准号:
    10637251
  • 财政年份:
    2023
  • 资助金额:
    $ 42.68万
  • 项目类别:
Structural and biochemical investigations into the mechanism and evolution of soluble guanylate cyclase regulation
可溶性鸟苷酸环化酶调节机制和进化的结构和生化研究
  • 批准号:
    10604822
  • 财政年份:
    2023
  • 资助金额:
    $ 42.68万
  • 项目类别:
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
  • 批准号:
    10716621
  • 财政年份:
    2023
  • 资助金额:
    $ 42.68万
  • 项目类别:
Converting cytoskeletal forces into biochemical signals
将细胞骨架力转化为生化信号
  • 批准号:
    10655891
  • 财政年份:
    2023
  • 资助金额:
    $ 42.68万
  • 项目类别:
Chemical strategies to investigate biochemical crosstalk in human chromatin
研究人类染色质生化串扰的化学策略
  • 批准号:
    10621634
  • 财政年份:
    2023
  • 资助金额:
    $ 42.68万
  • 项目类别:
EAGER: Elastic Electronics for Sensing Gut Luminal and Serosal Biochemical Release
EAGER:用于感测肠腔和浆膜生化释放的弹性电子器件
  • 批准号:
    2334134
  • 财政年份:
    2023
  • 资助金额:
    $ 42.68万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了