Mechanisms of Iron and Thiol Redox Regulation in Yeast
酵母中铁和硫醇氧化还原调节机制
基本信息
- 批准号:9916760
- 负责人:
- 金额:$ 42.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-05-10 至 2022-01-31
- 项目状态:已结题
- 来源:
- 关键词:BindingBiochemicalBiochemical PathwayBiogenesisBiological ModelsCell SurvivalCell physiologyCellsCellular biologyCoupledCysteineDNA-Protein InteractionDiseaseDisulfidesEnzymesEquilibriumEukaryotaGene ExpressionGene ProteinsGeneticGlutathioneGoalsHemeHomeostasisHumanIn VitroInterdisciplinary StudyIronIron OverloadLeftMaintenanceMalignant NeoplasmsMeasurementMetabolismMetalsMitochondriaMolecularMolecular GeneticsMutagenesisNMR SpectroscopyNeurodegenerative DisordersOrganellesOxidation-ReductionOxidative StressPathway interactionsPrevention strategyProcessProductionProtein BiochemistryProteinsReactionReactive Oxygen SpeciesRegulationResearchSignal TransductionSiteSourceSulfhydryl CompoundsSystemTestingX-Ray CrystallographyYeast Model SystemYeastsabsorptionbasebiophysical analysisbiophysical techniquescofactordesigngenetic approachgenetic manipulationglutaredoxinhuman diseasein vivoinnovationinsightiron metabolismmitochondrial dysfunctionpreventprogramsprotein functionpublic health relevancesensortreatment strategyyeast genetics
项目摘要
DESCRIPTION (provided by applicant): Iron and thiol redox homeostasis are intimately connected in cellular metabolism. Iron is an essential cofactor for proteins and enzymes in numerous biochemical pathways, but when left unchecked, excess iron catalyzes formation of reactive oxygen species (ROS) that disrupt thiol redox homeostasis. Intracellular thiol-disulfide balance is critical, in turn, for the activity of proteins with functionally important cysteine residues, which includes many Fe-binding enzymes. Thus, iron homeostasis and maintenance of thiol-disulfide balance are mutually dependent processes that are critical for cell survival. Th tripeptide glutathione (GSH) and glutaredoxin (Grx) proteins function together in both thiol redox control and iron homeostasis by catalyzing thiol-disulfide exchange reactions and participating in Fe-S cluster biogenesis pathways. Maintenance of GSH and iron homeostasis in the mitochondrion is especially important since this organelle is the primary site for Fe- S cluster and heme biogenesis, as well as the main source and target of ROS production. However, there are significant gaps in understanding both iron regulation mechanisms and mitochondrial thiol redox control pathways at the cellular and molecular level that require further study. The long term goals of this research program are: (1) to identify the mechanisms for maintaining adequate intracellular levels of the essential metal iron, and (2) to characterize intracellular factors that control mitochondrial thiol redox balance and GSH flux between subcellular compartments. Providing mechanistic insight into these critical cellular functions is essential for
preventing and treating diseases of iron overload, oxidative stress, and mitochondrial redox imbalance. For the iron regulation project, the innovative approach to accomplish these goals is to use a combination of protein biochemistry, mutagenesis, yeast genetics and cell biology, and biophysical methods (UV-visible absorption, CD, resonance Raman, EXAFS, Mössbauer, EPR, NMR spectroscopy, SAXS, and X-ray crystallography). The in vitro biochemical and biophysical studies will probe protein-protein, metal-protein, and protein-DNA interactions in iron sensing pathways to uncover the molecular details of iron signaling, while the genetics and cell biology studies test how these molecular interactions influence the in vivo functions and dynamic localization of iron signaling factors. For the mitochondrial redox project, a molecular genetics approach will be used to manipulate gene expression and protein localization, coupled with in vivo thiol redox measurements using targeted GFP-based redox sensors, to identify factors that influence thiol-disulfide balance and control GSH flux between subcellular compartments. Both projects exploit yeast model systems since these simple eukaryotes are easy to maintain and genetically manipulate in the lab, yet expresses many of the same redox and metal homeostasis systems as human cells. Overall, this multidisciplinary research program is designed to tease out the mechanistic details of both iron regulation and subcellular thiol redox control at the cellular and molecular level.
描述(申请人提供):铁和硫醇氧化还原动态平衡在细胞新陈代谢中密切相关。铁是许多生化途径中蛋白质和酶的重要辅因子,但如果不加控制,过量的铁会催化形成活性氧物种(ROS),从而扰乱硫醇氧化还原动态平衡。细胞内硫醇-二硫键的平衡反过来对具有重要功能的半胱氨酸残基的蛋白质的活性至关重要,半胱氨酸残基包括许多铁结合酶。因此,铁稳态和维持硫醇-二硫键平衡是相互依赖的过程,对细胞生存至关重要。谷胱甘肽和谷氧还蛋白通过催化硫醇-二硫键交换反应和参与铁-S簇生物发生途径,共同参与硫醇氧化还原控制和铁的动态平衡。线粒体中谷胱甘肽和铁的动态平衡的维持尤为重要,因为该细胞器是铁-S簇和血红素生物发生的主要部位,也是ROS产生的主要来源和靶点。然而,在细胞和分子水平上对铁调节机制和线粒体硫醇氧化还原调控途径的理解存在着重大差距,需要进一步研究。这项研究计划的长期目标是:(1)确定维持细胞内足够的必需金属铁水平的机制,(2)表征控制线粒体硫醇氧化还原平衡和亚细胞间GSH通量的细胞内因素。提供对这些关键细胞功能的机械洞察对于
防治铁超载、氧化应激、线粒体氧化还原失衡等疾病。对于铁调节项目,实现这些目标的创新方法是结合使用蛋白质生物化学、诱变、酵母遗传学和细胞生物学,以及生物物理方法(紫外可见吸收、CD、共振拉曼、EXAFS、Mössbauer、EPR、核磁共振光谱、SAXS和X射线结晶学)。体外生化和生物物理研究将探索铁信号通路中蛋白质-蛋白质、金属-蛋白质和蛋白质-DNA的相互作用,以揭示铁信号转导的分子细节,而遗传学和细胞生物学研究将测试这些分子相互作用如何影响体内铁信号因子的功能和动态定位。对于线粒体氧化还原项目,将使用分子遗传学方法来操纵基因表达和蛋白质定位,并使用基于GFP的目标氧化还原传感器在体内进行硫醇氧化还原测量,以确定影响硫醇-二硫键平衡的因素并控制亚细胞间的GSH通量。这两个项目都利用了酵母模型系统,因为这些简单的真核细胞很容易在实验室进行维护和基因操作,但表达许多与人类细胞相同的氧化还原和金属动态平衡系统。总体而言,这一多学科研究计划旨在从细胞和分子水平梳理铁调节和亚细胞硫醇氧化还原控制的机制细节。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Caryn E Outten其他文献
Caryn E Outten的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Caryn E Outten', 18)}}的其他基金
2021 Cell Biology of Metals Gordon Research Conference and Seminar
2021金属细胞生物学戈登研究会议暨研讨会
- 批准号:
10310641 - 财政年份:2021
- 资助金额:
$ 42.68万 - 项目类别:
Mechanisms of Fungal Iron Regulation and Thiol Redox Metabolism
真菌铁调节和硫醇氧化还原代谢的机制
- 批准号:
10330661 - 财政年份:2016
- 资助金额:
$ 42.68万 - 项目类别:
Mechanisms of Fungal Iron Regulation and Thiol Redox Metabolism
真菌铁调节和硫醇氧化还原代谢的机制
- 批准号:
10795144 - 财政年份:2016
- 资助金额:
$ 42.68万 - 项目类别:
Mechanisms of Fungal Iron Regulation and Thiol Redox Metabolism
真菌铁调节和硫醇氧化还原代谢的机制
- 批准号:
10544771 - 财政年份:2016
- 资助金额:
$ 42.68万 - 项目类别:
FASEB SRC on TRACE ELEMENTS IN BIOLOGY AND MEDICINE
FASEB SRC 关于生物学和医学中的微量元素
- 批准号:
8718646 - 财政年份:2014
- 资助金额:
$ 42.68万 - 项目类别:
Glutathione and Redox Control in the Mitochondrial Intermembrane Space
线粒体膜间空间中的谷胱甘肽和氧化还原控制
- 批准号:
8601188 - 财政年份:2010
- 资助金额:
$ 42.68万 - 项目类别:
相似海外基金
CAREER: Biochemical and Structural Mechanisms Controlling tRNA-Modifying Metalloenzymes
职业:控制 tRNA 修饰金属酶的生化和结构机制
- 批准号:
2339759 - 财政年份:2024
- 资助金额:
$ 42.68万 - 项目类别:
Continuing Grant
Leveraging releasable aryl diazonium ions to probe biochemical systems
利用可释放的芳基重氮离子探测生化系统
- 批准号:
2320160 - 财政年份:2023
- 资助金额:
$ 42.68万 - 项目类别:
Standard Grant
Diurnal environmental adaptation via circadian transcriptional control based on a biochemical oscillator
基于生化振荡器的昼夜节律转录控制的昼夜环境适应
- 批准号:
23H02481 - 财政年份:2023
- 资助金额:
$ 42.68万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Systematic manipulation of tau protein aggregation: bridging biochemical and pathological properties
tau 蛋白聚集的系统操作:桥接生化和病理特性
- 批准号:
479334 - 财政年份:2023
- 资助金额:
$ 42.68万 - 项目类别:
Operating Grants
Converting cytoskeletal forces into biochemical signals
将细胞骨架力转化为生化信号
- 批准号:
10655891 - 财政年份:2023
- 资助金额:
$ 42.68万 - 项目类别:
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
- 批准号:
10716621 - 财政年份:2023
- 资助金额:
$ 42.68万 - 项目类别:
Biochemical Mechanisms for Sustained Humoral Immunity
持续体液免疫的生化机制
- 批准号:
10637251 - 财政年份:2023
- 资助金额:
$ 42.68万 - 项目类别:
Structural and biochemical investigations into the mechanism and evolution of soluble guanylate cyclase regulation
可溶性鸟苷酸环化酶调节机制和进化的结构和生化研究
- 批准号:
10604822 - 财政年份:2023
- 资助金额:
$ 42.68万 - 项目类别:
Chemical strategies to investigate biochemical crosstalk in human chromatin
研究人类染色质生化串扰的化学策略
- 批准号:
10621634 - 财政年份:2023
- 资助金额:
$ 42.68万 - 项目类别:
Examination of risk assessment and biochemical assessment of fracture development focusing on the body composition of patients with rheumatoid arthritis
关注类风湿性关节炎患者身体成分的骨折发生风险评估和生化评估检查
- 批准号:
22KJ2600 - 财政年份:2023
- 资助金额:
$ 42.68万 - 项目类别:
Grant-in-Aid for JSPS Fellows














{{item.name}}会员




