Mechanisms of Fungal Iron Regulation and Thiol Redox Metabolism

真菌铁调节和硫醇氧化还原代谢的机制

基本信息

项目摘要

PROJECT SUMMARY Iron and thiol redox homeostasis have interdependent roles in cellular metabolism. Iron serves as a cofactor for a wide variety of proteins and enzymes in essential biochemical pathways, but excess iron can be damaging to cells by catalyzing formation of reactive oxygen species that disrupt thiol redox homeostasis. Intracellular thiol- disulfide balance is critical, in turn, for the activity of proteins with functionally important cysteine residues, which includes many Fe-binding proteins. The tripeptide glutathione (GSH) and glutaredoxin (Grx) proteins function together in both thiol redox control and iron homeostasis by facilitating redox reactions and participating in iron- sulfur (Fe-S) cluster biogenesis pathways. Our previous work in the non-pathogenic yeast S. cerevisiae and S. pombe have revealed the molecular mechanisms by which a subclass of Grxs, known as monothiol Grxs, bind and deliver GSH-ligated Fe-S clusters to communicate iron bioavailability to the transcription factors Aft1/Aft2 in S. cerevisiae and Php4 in S. pombe that regulate iron acquisition and utilization pathways. Furthermore, we have used molecular genetics and cell biology approaches coupled with in vivo redox measurements via genetically- encoded fluorescent redox sensors to characterize GSH subcellular trafficking pathways that impact both iron homeostasis and redox regulation in S. cerevisiae. Here we will extend these findings by studying the impact of GSH and Grxs on the Fe-S binding properties and DNA binding affinity of the S. pombe transcription factor Fep1 that represses Fe uptake pathways during iron repletion. Furthermore, we will define the molecular details of iron regulation pathways in pathogenic yeast (Candida glabrata, Candida albicans) that express homologs of monothiol Grxs, Aft1/2, Fep1, and Php4, but for which little mechanistic information is available. In parallel, we will characterize GSH:GSSG flux between subcellular compartments in yeast cells and measure the impact of GSH deficiency, excess, or impaired trafficking on essential metal metabolism. Our innovative approach to accomplish these goals is to combine yeast molecular genetics and cell biology techniques with biochemical, structural, and biophysical methods (UV-visible absorption and CD spectroscopy, EXAFS, X-ray crystallography, Mössbauer, EPR, and single cell ICP-TOF-MS). The in vitro biochemical, structural, and biophysical studies will be used to probe protein-protein, metal-protein, and protein-DNA interactions in iron sensing pathways to uncover the molecular details of iron signaling and to monitor single cell metallomic changes in yeast populations in response to alterations in iron or GSH metabolism. The genetics and cell biology studies test how these molecular interactions and metallome changes influence the in vivo functions and dynamic localization of iron signaling and GSH metabolism factors. Overall, this multidisciplinary research program is designed to tease out the mechanistic details of iron regulation and subcellular thiol redox control at the cellular and molecular level. By studying both pathogenic and non-pathogenic fungi we will compare and contrast different strategies for adapting to redox perturbations and high/low iron environments.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Caryn E Outten其他文献

Caryn E Outten的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Caryn E Outten', 18)}}的其他基金

2021 Cell Biology of Metals Gordon Research Conference and Seminar
2021金属细胞生物学戈登研究会议暨研讨会
  • 批准号:
    10310641
  • 财政年份:
    2021
  • 资助金额:
    $ 37.25万
  • 项目类别:
Mechanisms of Iron and Thiol Redox Regulation in Yeast
酵母中铁和硫醇氧化还原调节机制
  • 批准号:
    9916760
  • 财政年份:
    2016
  • 资助金额:
    $ 37.25万
  • 项目类别:
Mechanisms of Fungal Iron Regulation and Thiol Redox Metabolism
真菌铁调节和硫醇氧化还原代谢的机制
  • 批准号:
    10330661
  • 财政年份:
    2016
  • 资助金额:
    $ 37.25万
  • 项目类别:
Mechanisms of Fungal Iron Regulation and Thiol Redox Metabolism
真菌铁调节和硫醇氧化还原代谢的机制
  • 批准号:
    10795144
  • 财政年份:
    2016
  • 资助金额:
    $ 37.25万
  • 项目类别:
FASEB SRC on TRACE ELEMENTS IN BIOLOGY AND MEDICINE
FASEB SRC 关于生物学和医学中的微量元素
  • 批准号:
    8718646
  • 财政年份:
    2014
  • 资助金额:
    $ 37.25万
  • 项目类别:
Mechanistic Studies of Iron Regulation in Yeast
酵母铁调节机制研究
  • 批准号:
    8372763
  • 财政年份:
    2012
  • 资助金额:
    $ 37.25万
  • 项目类别:
Mechanistic Studies of Iron Regulation in Yeast
酵母铁调节机制研究
  • 批准号:
    8840971
  • 财政年份:
    2012
  • 资助金额:
    $ 37.25万
  • 项目类别:
Mechanistic Studies of Iron Regulation in Yeast
酵母铁调节机制研究
  • 批准号:
    8517147
  • 财政年份:
    2012
  • 资助金额:
    $ 37.25万
  • 项目类别:
Mechanistic Studies of Iron Regulation in Yeast
酵母铁调节机制研究
  • 批准号:
    8656714
  • 财政年份:
    2012
  • 资助金额:
    $ 37.25万
  • 项目类别:
Glutathione and Redox Control in the Mitochondrial Intermembrane Space
线粒体膜间空间中的谷胱甘肽和氧化还原控制
  • 批准号:
    8601188
  • 财政年份:
    2010
  • 资助金额:
    $ 37.25万
  • 项目类别:

相似海外基金

Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
  • 批准号:
    23H01982
  • 财政年份:
    2023
  • 资助金额:
    $ 37.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
  • 批准号:
    23KJ0116
  • 财政年份:
    2023
  • 资助金额:
    $ 37.25万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
  • 批准号:
    10598276
  • 财政年份:
    2023
  • 资助金额:
    $ 37.25万
  • 项目类别:
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
  • 批准号:
    10682794
  • 财政年份:
    2023
  • 资助金额:
    $ 37.25万
  • 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
  • 批准号:
    2233343
  • 财政年份:
    2023
  • 资助金额:
    $ 37.25万
  • 项目类别:
    Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
  • 批准号:
    2233342
  • 财政年份:
    2023
  • 资助金额:
    $ 37.25万
  • 项目类别:
    Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
  • 批准号:
    479363
  • 财政年份:
    2023
  • 资助金额:
    $ 37.25万
  • 项目类别:
    Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
  • 批准号:
    10681989
  • 财政年份:
    2023
  • 资助金额:
    $ 37.25万
  • 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
  • 批准号:
    2237240
  • 财政年份:
    2023
  • 资助金额:
    $ 37.25万
  • 项目类别:
    Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
  • 批准号:
    2305592
  • 财政年份:
    2023
  • 资助金额:
    $ 37.25万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了