The Function of Small RNA-Based viral Defense System in E. coli - Renewal 1
大肠杆菌中基于小 RNA 的病毒防御系统的功能 - 更新 1
基本信息
- 批准号:10338154
- 负责人:
- 金额:$ 33.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAntibiotic ResistanceArchaeaAutoimmuneAutomobile DrivingBacteriaBacterial GenomeBiological ModelsCell physiologyCellsCessation of lifeClustered Regularly Interspaced Short Palindromic RepeatsComplexDNADNA SequenceDevicesDiscriminationEnsureEnzymesEscherichia coliEubacteriumEukaryotic CellFundingFutureGenerationsGeneticGenetic TranscriptionGenomeGoalsHorizontal Gene TransferImmune systemImmunityInfectionLaboratoriesLeadLinkMemoryMethodsMobile Genetic ElementsMolecularNucleic AcidsParasitesPatternPopulationProcessProductionProkaryotic CellsProteinsRNAReactionResistanceSelection BiasSmall RNASpacer DNAStructureSystemTransactViralVirusWorkbasecomparativefallsgenetic elementgenome editinggenomic locushelicasein vivoinnovationnucleasepreventrecombinational repairresistance generesponsesuicidalviral DNA
项目摘要
CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-associated genes)
loci are present in almost all archaea and half of eubacteria. They protect prokaryotes from foreign
genetic elements. While highly diverse, all CRISPR-Cas systems function through three common steps:
1) adaptation, i.e., acquisition of short foreign DNA sequences (spacers) into CRISPR arrays; 2)
production of mature protective CRISPR RNAs (crRNAs), and 3) interference, when Cas nucleases
guided by crRNAs destroy nucleic acids containing complementary targets. Studies of the interference
part of CRISPR response have revolutionized the field of genomic editing. The less-studied adaptation
part limits global horizontal gene transfer and can be harnessed for creation of DNA-based recording
devices and control of the spread of antibiotic resistance genes. Initial CRISPR immunity is built in the
course of “naïve”, non-discriminate acquisition of short intracellular DNA molecules – prespacers - as
spacers into CRISPR arrays. It occurs very infrequently and can lead to suicidal self-interference. A
remarkable mechanism called “priming” operates in type I CRISPR-Cas systems: acquisition of spacers
from DNA with sequences matching pre-existing spacers is dramatically stimulated compared to naïve
acquisition from DNA devoid of such sequences. Primed adaptation is highly beneficial to the host: it
rapidly leads to specific acquisition of additional interference-proficient spacers from genetic parasites
and ensures that no self-targeting spacers are selected. The mechanistic relationship between
interference and adaptation during priming is not fully clear. The goal of this proposal is to dissect
interrelationships between interference and adaptation during priming and to identify cellular processes
that feed the adaptation machinery during naïve and primed adaptation. We will use FragSeq - an
innovative high-throughput approach that identifies short intracellular DNA fragments and that was
developed during the previous funding period - to determine the structure of prespacers and of other in
vivo adaptation intermediates generated during naïve and primed adaptation in diverse CRISPR-Cas
systems classes and types, and identify non-Cas cellular proteins essential for prespacer generation and
spacer acquisition. The understanding of CRISPR adaptation that will result from our work will allow us
and others to optimize the efficiency of the adaptation process, facilitating construction of strains with
desired spacer content/immunity profiles and, by revealing processes that limit adaptation, may help
control viability of bacterial populations by inducing adaptation from cell’s own DNA and self-interference.
CRISPR-Cas(成簇规则间隔短回文重复序列-CRISPR相关基因)
位点存在于几乎所有古细菌和一半真细菌中。它们保护原核生物免受外来物质的侵害
遗传元素。虽然高度多样化,但所有 CRISPR-Cas 系统都通过三个常见步骤发挥作用:
1) 适应,即将短的外源 DNA 序列(间隔区)采集到 CRISPR 阵列中; 2)
成熟保护性 CRISPR RNA (crRNA) 的产生,以及 3) Cas 核酸酶干扰
由 crRNA 引导破坏含有互补靶标的核酸。干扰研究
CRISPR 反应的一部分彻底改变了基因组编辑领域。研究较少的适应
部分限制全球水平基因转移,可用于创建基于 DNA 的记录
装置和控制抗生素抗性基因的传播。最初的 CRISPR 免疫是建立在
“天真的”过程,无差别地获取短的细胞内 DNA 分子 - 预间隔物 - 作为
将间隔区插入 CRISPR 阵列中。这种情况很少发生,并且可能导致自杀性的自我干扰。一个
I 型 CRISPR-Cas 系统中称为“启动”的显着机制:间隔区的获取
与naïve相比,来自与预先存在的间隔区匹配的序列的DNA受到显着刺激
从不含此类序列的 DNA 中获取。引发的适应对宿主非常有益:它
快速导致从遗传寄生虫中特异性获得额外的干扰能力强的间隔区
并确保不选择自靶向间隔物。之间的机械关系
启动期间的干扰和适应尚不完全清楚。该提案的目标是剖析
启动期间干扰和适应之间的相互关系并识别细胞过程
在幼稚适应和启动适应期间为适应机制提供动力。我们将使用 FragSeq - 一个
创新的高通量方法,可识别短的细胞内 DNA 片段
在上一个资助期间开发 - 确定预间隔器和其他的结构
不同 CRISPR-Cas 中初始适应和引发适应过程中产生的体内适应中间体
系统类别和类型,并识别预间隔子生成和生成所必需的非 Cas 细胞蛋白
间隔获取。通过我们的工作对 CRISPR 适应的理解将使我们能够
和其他优化适应过程的效率,促进菌株的构建
所需的间隔物含量/免疫特征,并通过揭示限制适应的过程,可能会有所帮助
通过诱导细胞自身 DNA 的适应和自我干扰来控制细菌种群的活力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KONSTANTIN V SEVERINOV其他文献
KONSTANTIN V SEVERINOV的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KONSTANTIN V SEVERINOV', 18)}}的其他基金
The Function of Small RNA-Based viral Defense System in E. coli
大肠杆菌中基于小RNA的病毒防御系统的功能
- 批准号:
10388674 - 财政年份:2021
- 资助金额:
$ 33.96万 - 项目类别:
The function of small RNA-based viral defense system in E. coli
大肠杆菌中基于小RNA的病毒防御系统的功能
- 批准号:
8606473 - 财政年份:2013
- 资助金额:
$ 33.96万 - 项目类别:
The function of small RNA-based viral defense system in E. coli
大肠杆菌中基于小RNA的病毒防御系统的功能
- 批准号:
8420796 - 财政年份:2013
- 资助金额:
$ 33.96万 - 项目类别:
The function of small RNA-based viral defense system in E. coli
大肠杆菌中基于小RNA的病毒防御系统的功能
- 批准号:
8797333 - 财政年份:2013
- 资助金额:
$ 33.96万 - 项目类别:
The function of small RNA-based viral defense system in E. coli
大肠杆菌中基于小RNA的病毒防御系统的功能
- 批准号:
8995211 - 财政年份:2013
- 资助金额:
$ 33.96万 - 项目类别:
GENOMIC AND PROTEOMIC ANALYSIS OF PHI32, A NOVEL ESCHERICHIA COLI PHAGE
新型大肠杆菌噬菌体 PHI32 的基因组和蛋白质组分析
- 批准号:
8169150 - 财政年份:2010
- 资助金额:
$ 33.96万 - 项目类别:
GENOMIC AND PROTEOMIC ANALYSIS OF PHI32, A NOVEL ESCHERICHIA COLI PHAGE
新型大肠杆菌噬菌体 PHI32 的基因组和蛋白质组分析
- 批准号:
7954118 - 财政年份:2009
- 资助金额:
$ 33.96万 - 项目类别:
Phage-induced modifications of RNA polymerase
噬菌体诱导的 RNA 聚合酶修饰
- 批准号:
7933443 - 财政年份:2009
- 资助金额:
$ 33.96万 - 项目类别:
GENOMIC AND PROTEOMIC ANALYSIS OF PHI32, A NOVEL ESCHERICHIA COLI PHAGE
新型大肠杆菌噬菌体 PHI32 的基因组和蛋白质组分析
- 批准号:
7722268 - 财政年份:2008
- 资助金额:
$ 33.96万 - 项目类别:
Novel Microcin C-based Inhibitors of Pathogenic Bacteria
基于 Microcin C 的新型病原菌抑制剂
- 批准号:
7706315 - 财政年份:2008
- 资助金额:
$ 33.96万 - 项目类别:
相似海外基金
Ecological and Evolutionary Drivers of Antibiotic Resistance in Patients
患者抗生素耐药性的生态和进化驱动因素
- 批准号:
EP/Y031067/1 - 财政年份:2024
- 资助金额:
$ 33.96万 - 项目类别:
Research Grant
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
- 批准号:
2307222 - 财政年份:2024
- 资助金额:
$ 33.96万 - 项目类别:
Standard Grant
Molecular Epidemiology of Antibiotic Resistance in Clostridioides difficile
艰难梭菌抗生素耐药性的分子流行病学
- 批准号:
502587 - 财政年份:2024
- 资助金额:
$ 33.96万 - 项目类别:
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
- 批准号:
2307223 - 财政年份:2024
- 资助金额:
$ 33.96万 - 项目类别:
Standard Grant
The roles of a universally conserved DNA-and RNA-binding domain in controlling MRSA virulence and antibiotic resistance
普遍保守的 DNA 和 RNA 结合域在控制 MRSA 毒力和抗生素耐药性中的作用
- 批准号:
MR/Y013131/1 - 财政年份:2024
- 资助金额:
$ 33.96万 - 项目类别:
Research Grant
Determining structural dynamics of membrane proteins in their native environment: focus on bacterial antibiotic resistance
确定膜蛋白在其天然环境中的结构动力学:关注细菌抗生素耐药性
- 批准号:
MR/X009580/1 - 财政年份:2024
- 资助金额:
$ 33.96万 - 项目类别:
Fellowship
CAREER: Systems Microbiology and InterdiscipLinary Education for Halting Environmental Antibiotic Resistance Transmission (SMILE HEART)
职业:阻止环境抗生素耐药性传播的系统微生物学和跨学科教育(SMILE HEART)
- 批准号:
2340818 - 财政年份:2024
- 资助金额:
$ 33.96万 - 项目类别:
Continuing Grant
Reinforcing the battle at the bacterial cell wall: Structure-guided characterization and inhibition of beta-lactam antibiotic resistance signalling mechanisms
加强细菌细胞壁的战斗:β-内酰胺抗生素耐药信号机制的结构引导表征和抑制
- 批准号:
480022 - 财政年份:2023
- 资助金额:
$ 33.96万 - 项目类别:
Operating Grants
The spread of antibiotic resistance in bacteria-plasmid networks
抗生素耐药性在细菌-质粒网络中的传播
- 批准号:
BB/X010473/1 - 财政年份:2023
- 资助金额:
$ 33.96万 - 项目类别:
Fellowship
An RNA Nanosensor for the Diagnosis of Antibiotic Resistance in M. Tuberculosis
用于诊断结核分枝杆菌抗生素耐药性的 RNA 纳米传感器
- 批准号:
10670613 - 财政年份:2023
- 资助金额:
$ 33.96万 - 项目类别:














{{item.name}}会员




