High-content High-speed Chemical Imaging of Metabolic Reprogramming by Integration of Advanced Instrumentation and Data Science
通过先进仪器和数据科学的集成进行代谢重编程的高内涵高速化学成像
基本信息
- 批准号:10344774
- 负责人:
- 金额:$ 52.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:Amino AcidsAmplifiersBypassCarboplatinCell physiologyCellsCellular Metabolic ProcessChemicalsCholesterolCisplatinCollaborationsComputers and Advanced InstrumentationData ScienceDevelopmentDrug resistanceFatty AcidsFiberFingerprintGlucoseHomeostasisImageIndividualKnowledgeLasersLearningLegal patentLipidsMachine LearningMalignant NeoplasmsMalignant neoplasm of ovaryMapsMeasurementMeasuresMetabolicMetabolismMicroscopeMicroscopyMolecular ProfilingNoiseOrganismPhysiologic pulsePriceResearchResistanceResolutionSamplingScanningSideSignal TransductionSpeedStressThinkingTimeTissuesanticancer researchbasecancer celldenoisinghuman diseaseimaging platformimprovedinstrumentationmetabolic imagingmillisecondmultidisciplinarynovelrefractory cancerspectroscopic imagingsubmicrontooltumor metabolismvibration
项目摘要
Project Summary:
Providing molecular fingerprint vibration information and high imaging speed, coherent Raman scattering
microscopy, based on either coherent anti-Stokes Raman scattering (CARS) or stimulated Raman scattering
(SRS), allows real-time vibrational imaging of living cells and/or tissues with sub-micron spatial resolution These
instrumentation-based advances, however, do not fulfill all the desired parameters in hyperspectral imaging,
including broad bandwidth, high signal to noise ratio (SNR) and high speed. In pushing these physical limits, it
is common that one parameter is optimized at the price of sacrificing other advantages. The current proposal
aims to break this conventional thinking of "no free lunch in optimization" through a synergistic integration of
advanced instrumentation and data science. A multidisciplinary team with a strong track record of collaborations
will pursue the proposed studies. Ji-Xin Cheng (PI) is a leading expert in the development and applications of
SRS chemical imaging. Lei Tian (co-I) is a leading expert in computational microscopy and machine learning.
Daniela Matei (co-I) is a leading expert in cancer research specialized in ovarian cancer. We aim to develop two
complementary platforms that will allow high-speed, high-content, and high-sensitivity mapping of cell
metabolism. The first platform is for samples without prior knowledge. We will build a polygon scanner to tune
the delay between two chirped pulses on a 20-microsecond time scale. We will then deploy deep spatial-spectral
learning to denoise the low-SNR hyperspectral measurements and extract salient information with much
enhanced SNR. This integrated approach effectively bypasses the conventional tradeoff between acquisition
speed and SNR and enables high-speed, high-throughput, hyperspectral SRS imaging using informative
fingerprint Raman bands. The second platform is for samples with known target species. We will develop a
sparsely sampled hyperspectral imaging strategy to increase the overall speed by one order of magnitude while
maintaining the same SNR. We will develop a novel "recursive feature elimination" approach to determine the
minimum number of essential frames. On the instrumentation side, a fast-tuning fiber laser will be deployed to
acquire a sparsely sampled hyperspectral stack within one second for the study of living systems. As a focused
application, we will apply the proposed platforms to systematically investigate metabolic reprogramming in
ovarian cancers that are cisplatin resistant. Our focused application will unveil hidden signatures that are
associated with drug resistance, which will open new opportunities for improved treatment of drug-resistant
cancers.
项目概要:
相干拉曼散射提供分子指纹振动信息和高成像速度,
基于相干反斯托克斯拉曼散射(汽车)或受激拉曼散射的显微镜
(SRS),允许以亚微米空间分辨率对活细胞和/或组织进行实时振动成像。
然而,基于仪器的进步,不能满足高光谱成像中的所有期望参数,
包括宽带宽、高信噪比(SNR)和高速。在推动这些物理极限时,
一个参数的优化往往是以牺牲其他优点为代价的。现时的建议
旨在通过协同整合,打破“优化没有免费的午餐”的传统思维,
先进的仪器和数据科学。一个多学科的团队,具有良好的合作记录
将继续进行拟议的研究。Ji-Xin Cheng(PI)是开发和应用
SRS化学成像。Lei Tian(co-I)是计算显微镜和机器学习领域的领先专家。
Daniela马泰(co-I)是专门研究卵巢癌的癌症研究领域的领先专家。我们的目标是发展两个
互补的平台,将允许高速,高内容,高灵敏度的细胞映射
新陈代谢.第一个平台用于没有先验知识的样本。我们将建立一个多边形扫描仪,
在20微秒的时间尺度上两个啁啾脉冲之间的延迟。然后我们将部署深空光谱
学习去噪低信噪比的高光谱测量和提取显著信息,
增强SNR。这种综合方法有效地绕过了传统的收购之间的权衡
速度和SNR,并能够使用信息丰富的高速度,高通量,高光谱SRS成像
指纹拉曼谱带。第二个平台用于已知目标物种的样本。我们将开发一个
稀疏采样的高光谱成像策略,以将整体速度提高一个数量级,
保持相同的SNR。我们将开发一种新的“递归特征消除”方法来确定
最少的基本框架。在仪器方面,将部署快速调谐光纤激光器,
在一秒钟内获得稀疏采样的高光谱叠加,用于生命系统的研究。作为聚焦的
应用,我们将应用所提出的平台系统地研究代谢重编程,
对顺铂耐药的卵巢癌。我们专注的应用程序将揭示隐藏的签名,
这将为改善耐药性的治疗提供新的机会。
癌的
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ji-Xin Cheng其他文献
Ji-Xin Cheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ji-Xin Cheng', 18)}}的其他基金
2023 Chemical Imaging Gordon Research Conferences
2023 年化学成像戈登研究会议
- 批准号:
10605394 - 财政年份:2023
- 资助金额:
$ 52.04万 - 项目类别:
Sub-millimeter precision wireless neuromodulation using a microwave split ring resonator
使用微波开口环谐振器的亚毫米精度无线神经调节
- 批准号:
10669784 - 财政年份:2022
- 资助金额:
$ 52.04万 - 项目类别:
High-content High-speed Chemical Imaging of Metabolic Reprogramming by Integration of Advanced Instrumentation and Data Science
通过先进仪器和数据科学的集成进行代谢重编程的高内涵高速化学成像
- 批准号:
10543185 - 财政年份:2022
- 资助金额:
$ 52.04万 - 项目类别:
Sub-millimeter precision wireless neuromodulation using a microwave split ring resonator
使用微波开口环谐振器的亚毫米精度无线神经调节
- 批准号:
10516429 - 财政年份:2022
- 资助金额:
$ 52.04万 - 项目类别:
Mapping Cancer Metabolism by Mid-infrared Photothermal Microscopy
通过中红外光热显微镜绘制癌症代谢图
- 批准号:
10491322 - 财政年份:2021
- 资助金额:
$ 52.04万 - 项目类别:
Mapping Cancer Metabolism by Mid-infrared Photothermal Microscopy
通过中红外光热显微镜绘制癌症代谢图
- 批准号:
10271761 - 财政年份:2021
- 资助金额:
$ 52.04万 - 项目类别:
Mapping Cancer Metabolism by Mid-infrared Photothermal Microscopy
通过中红外光热显微镜绘制癌症代谢图
- 批准号:
10675665 - 财政年份:2021
- 资助金额:
$ 52.04万 - 项目类别:
Vibrational Spectroscopic Imaging to Unveil Hidden Signatures in Living Systems
振动光谱成像揭示生命系统中隐藏的特征
- 批准号:
10206200 - 财政年份:2020
- 资助金额:
$ 52.04万 - 项目类别:
Vibrational Spectroscopic Imaging to Unveil Hidden Signatures in Living Systems
振动光谱成像揭示生命系统中隐藏的特征
- 批准号:
10660979 - 财政年份:2020
- 资助金额:
$ 52.04万 - 项目类别:
Vibrational Spectroscopic Imaging to Unveil Hidden Signatures in Living Systems
振动光谱成像揭示生命系统中隐藏的特征
- 批准号:
10439640 - 财政年份:2020
- 资助金额:
$ 52.04万 - 项目类别:
相似海外基金
SBIR Phase II: Thermally-optimized power amplifiers for next-generation telecommunication and radar
SBIR 第二阶段:用于下一代电信和雷达的热优化功率放大器
- 批准号:
2335504 - 财政年份:2024
- 资助金额:
$ 52.04万 - 项目类别:
Cooperative Agreement
Interferometric and Multiband optical Parametric Amplifiers for Communications (IMPAC)
用于通信的干涉式和多频带光学参量放大器 (IMPAC)
- 批准号:
EP/X031918/1 - 财政年份:2024
- 资助金额:
$ 52.04万 - 项目类别:
Fellowship
Josephson Parametric Amplifiers using CVD graphene junctions
使用 CVD 石墨烯结的约瑟夫森参量放大器
- 批准号:
EP/Y003152/1 - 财政年份:2024
- 资助金额:
$ 52.04万 - 项目类别:
Research Grant
Semiconductor-based Terahertz Traveling Wave Amplifiers for Monolithic Integration
用于单片集成的半导体太赫兹行波放大器
- 批准号:
2329940 - 财政年份:2023
- 资助金额:
$ 52.04万 - 项目类别:
Standard Grant
OPTIME-PA: Optimal MMIC Design of E-Band Power Amplifiers for Satcom using Dedicated Measurements and Non-Linear Modelling
OPTIME-PA:使用专用测量和非线性建模的卫星通信 E 频段功率放大器的最佳 MMIC 设计
- 批准号:
10075892 - 财政年份:2023
- 资助金额:
$ 52.04万 - 项目类别:
Collaborative R&D
Optical Glass Amplifiers for High Capacity Networks
用于高容量网络的光学玻璃放大器
- 批准号:
538379-2018 - 财政年份:2022
- 资助金额:
$ 52.04万 - 项目类别:
Collaborative Research and Development Grants
Investigating the function of ZU5 domain-containing proteins as amplifiers of caspase activation
研究含有 ZU5 结构域的蛋白质作为 caspase 激活放大器的功能
- 批准号:
10681326 - 财政年份:2022
- 资助金额:
$ 52.04万 - 项目类别:
Investigating the function of ZU5 domain-containing proteins as amplifiers of caspase activation
研究含有 ZU5 结构域的蛋白质作为 caspase 激活放大器的功能
- 批准号:
10621402 - 财政年份:2022
- 资助金额:
$ 52.04万 - 项目类别:
Broadband Digital Doherty Amplifiers for Sub-6 GHz 5G wireless Applications
适用于 6 GHz 以下 5G 无线应用的宽带数字 Doherty 放大器
- 批准号:
573452-2022 - 财政年份:2022
- 资助金额:
$ 52.04万 - 项目类别:
Alliance Grants
TALENT – Tapered AmpLifiErs for quaNtum Technologies
人才 — 量子技术的锥形放大器
- 批准号:
10032436 - 财政年份:2022
- 资助金额:
$ 52.04万 - 项目类别:
Collaborative R&D