Sub-millimeter precision wireless neuromodulation using a microwave split ring resonator
使用微波开口环谐振器的亚毫米精度无线神经调节
基本信息
- 批准号:10516429
- 负责人:
- 金额:$ 24.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:Action PotentialsAddressAxonBackBiophotonicsBrainBrain InjuriesCaliberCellular PhoneChemicalsChronicClinical TreatmentCommunicationContrast MediaCopperCouplesDevelopmentDevice or Instrument DevelopmentDevicesDoctor of PhilosophyElectromagnetic EnergyEpilepsyExposure toFrequenciesGenerationsHumanImageImplantIn VitroLabelMagnetismMediatingMethodsModelingMonitorMusNeural InhibitionNeuraxisNeuronsOcular dominance columnsOpticsPacemakersPain managementPenetrationPeripheral Nervous SystemPeripheral Nervous System DiseasesPhotonsReportingResearchResearch PersonnelResolutionRiskScientistSeizuresSpottingsTechnologyTimeTissuesTitaniumToxic effectTranscranial magnetic stimulationVisual CortexWorkYangbasebiomaterial compatibilitybrain tissuecraniumdesignelectric fieldin vivo Modelmicrowave electromagnetic radiationminimally invasivemouse modelmultidisciplinaryneural stimulationneuroregulationnovelrelating to nervous systemultrasoundwirelesswireless electronicwireless fidelity
项目摘要
Project Summary
Minimally invasive neural modulation at sub-millimeter spatial resolution remains a critical yet unmet
biomedical need. Researchers have explored a broad spectrum of electromagnetic wave and developed
wireless neuromodulation methods. Due to its long wavelength, transcranial magnetic stimulation does not
provide sufficient spatial resolution to target a functional unit such as a single ocular dominance column in the
visual cortex or a diseased peripheral nerve. On the other hand, photons, with their short wavelength, offer
micrometer-scale spatial precision but can barely penetrate couple hundred micrometers into the tissue, not to
mention the human skull. Microwave (MW), with frequencies between 300 MHz and 300 GHz, fills the gap
between optical wave and magnetic wave, yet, has rarely been explored for neuromodulation. We propose a
minimally invasive neuromodulation device by taking advantage of a microwave split ring resonator (SRR)
design. The SRR has a perimeter of approximately one half of MW wavelength, thus acting as a resonant
antenna. It couples the microwave wirelessly and concentrates the microwave at the gap, producing a
localized electrical field of ~100 μm in space. Our scientific premise is based on the nonthermal neural
inhibitory effect of microwave and the resonance effect of the SRR. The SRR produces concentrated
microwave and allows for neuromodulation beyond the microwave diffraction limit, reaching ~100 μm spatial
precision. In the proposed work, we will design and fabricate an implantable SRR with titanium for its superior
biocompatibility. We will then validate the SRR’s potential in neural inhibition using primary neurons in vitro and
a mouse epilepsy model in vivo. By accomplishing the proposed studies, we will have developed a
biocompatible and implantable neuromodulation device. The centimeter-scale penetration depth provided by
microwave and the sub-millimeter spatial precision provided by SRR promises broad biomedical applications.
For central nervous system, our technology allows minimally invasive transcranial modulation of neural
activities inside brain and for clinical treatment of epilepsy. A multi-disciplinary team with complementary
expertise is assembled to implement the proposed activities.
项目摘要
亚毫米空间分辨率的微创神经调制仍然是一个关键但尚未满足的问题
生物医学需求。研究人员探索了广泛的电磁波频谱,并开发出
无线神经调节方法。由于其波长较长,经颅磁刺激不能
提供足够的空间分辨率以瞄准功能单元,例如
视皮层或病变的周围神经。另一方面,具有短波长的光子提供了
微米级的空间精度,但只能勉强穿透几百微米进入组织,而不是
提到人类的头骨。频率在300 MHz到300 GHz之间的微波(MW)填补了这一空白
在光波和磁波之间,对于神经调节的研究还很少。我们提出了一个
利用微波开环谐振器(SRR)的微创神经调节装置
设计。SRR具有大约一半兆瓦波长的周长,因此充当谐振器
天线。它以无线方式耦合微波,并将微波集中在缝隙处,产生
空间局域电场为~100μm。我们的科学前提是基于非热神经
微波的抑制效应和SRR的共振效应。SRR生产浓缩的
微波并允许神经调制超过微波衍射限制,达到~100μm空间
精确度。在这项拟议的工作中,我们将设计和制造一种可植入的钛SRR,以满足其优越的性能
生物兼容性。然后我们将使用体外培养的原代神经元来验证SRR在神经抑制方面的潜力
一种小鼠体内癫痫模型。通过完成拟议的研究,我们将制定一个
生物相容性和植入性神经调节装置。提供的厘米级穿透深度
微波和SRR提供的亚毫米空间精度具有广阔的生物医学应用前景。
对于中枢神经系统,我们的技术允许对神经进行微创的经颅调制
脑内活动和癫痫的临床治疗。一支多学科互补的团队
汇集了专门知识,以执行拟议的活动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ji-Xin Cheng其他文献
Ji-Xin Cheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ji-Xin Cheng', 18)}}的其他基金
2023 Chemical Imaging Gordon Research Conferences
2023 年化学成像戈登研究会议
- 批准号:
10605394 - 财政年份:2023
- 资助金额:
$ 24.75万 - 项目类别:
Sub-millimeter precision wireless neuromodulation using a microwave split ring resonator
使用微波开口环谐振器的亚毫米精度无线神经调节
- 批准号:
10669784 - 财政年份:2022
- 资助金额:
$ 24.75万 - 项目类别:
High-content High-speed Chemical Imaging of Metabolic Reprogramming by Integration of Advanced Instrumentation and Data Science
通过先进仪器和数据科学的集成进行代谢重编程的高内涵高速化学成像
- 批准号:
10543185 - 财政年份:2022
- 资助金额:
$ 24.75万 - 项目类别:
High-content High-speed Chemical Imaging of Metabolic Reprogramming by Integration of Advanced Instrumentation and Data Science
通过先进仪器和数据科学的集成进行代谢重编程的高内涵高速化学成像
- 批准号:
10344774 - 财政年份:2022
- 资助金额:
$ 24.75万 - 项目类别:
Mapping Cancer Metabolism by Mid-infrared Photothermal Microscopy
通过中红外光热显微镜绘制癌症代谢图
- 批准号:
10491322 - 财政年份:2021
- 资助金额:
$ 24.75万 - 项目类别:
Mapping Cancer Metabolism by Mid-infrared Photothermal Microscopy
通过中红外光热显微镜绘制癌症代谢图
- 批准号:
10271761 - 财政年份:2021
- 资助金额:
$ 24.75万 - 项目类别:
Mapping Cancer Metabolism by Mid-infrared Photothermal Microscopy
通过中红外光热显微镜绘制癌症代谢图
- 批准号:
10675665 - 财政年份:2021
- 资助金额:
$ 24.75万 - 项目类别:
Vibrational Spectroscopic Imaging to Unveil Hidden Signatures in Living Systems
振动光谱成像揭示生命系统中隐藏的特征
- 批准号:
10206200 - 财政年份:2020
- 资助金额:
$ 24.75万 - 项目类别:
Vibrational Spectroscopic Imaging to Unveil Hidden Signatures in Living Systems
振动光谱成像揭示生命系统中隐藏的特征
- 批准号:
10660979 - 财政年份:2020
- 资助金额:
$ 24.75万 - 项目类别:
Vibrational Spectroscopic Imaging to Unveil Hidden Signatures in Living Systems
振动光谱成像揭示生命系统中隐藏的特征
- 批准号:
10439640 - 财政年份:2020
- 资助金额:
$ 24.75万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
Research Grant