Sub-millimeter precision wireless neuromodulation using a microwave split ring resonator

使用微波开口环谐振器的亚毫米精度无线神经调节

基本信息

  • 批准号:
    10516429
  • 负责人:
  • 金额:
    $ 24.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Project Summary Minimally invasive neural modulation at sub-millimeter spatial resolution remains a critical yet unmet biomedical need. Researchers have explored a broad spectrum of electromagnetic wave and developed wireless neuromodulation methods. Due to its long wavelength, transcranial magnetic stimulation does not provide sufficient spatial resolution to target a functional unit such as a single ocular dominance column in the visual cortex or a diseased peripheral nerve. On the other hand, photons, with their short wavelength, offer micrometer-scale spatial precision but can barely penetrate couple hundred micrometers into the tissue, not to mention the human skull. Microwave (MW), with frequencies between 300 MHz and 300 GHz, fills the gap between optical wave and magnetic wave, yet, has rarely been explored for neuromodulation. We propose a minimally invasive neuromodulation device by taking advantage of a microwave split ring resonator (SRR) design. The SRR has a perimeter of approximately one half of MW wavelength, thus acting as a resonant antenna. It couples the microwave wirelessly and concentrates the microwave at the gap, producing a localized electrical field of ~100 μm in space. Our scientific premise is based on the nonthermal neural inhibitory effect of microwave and the resonance effect of the SRR. The SRR produces concentrated microwave and allows for neuromodulation beyond the microwave diffraction limit, reaching ~100 μm spatial precision. In the proposed work, we will design and fabricate an implantable SRR with titanium for its superior biocompatibility. We will then validate the SRR’s potential in neural inhibition using primary neurons in vitro and a mouse epilepsy model in vivo. By accomplishing the proposed studies, we will have developed a biocompatible and implantable neuromodulation device. The centimeter-scale penetration depth provided by microwave and the sub-millimeter spatial precision provided by SRR promises broad biomedical applications. For central nervous system, our technology allows minimally invasive transcranial modulation of neural activities inside brain and for clinical treatment of epilepsy. A multi-disciplinary team with complementary expertise is assembled to implement the proposed activities.
项目概要 亚毫米空间分辨率的微创神经调制仍然是一个关键但尚未得到满足的问题 生物医学需求。研究人员探索了广泛的电磁波谱并开发了 无线神经调节方法。由于其波长较长,经颅磁刺激不会 提供足够的空间分辨率来瞄准功能单元,例如眼睛中的单眼优势柱 视觉皮层或患病的周围神经。另一方面,光子因其波长短而提供 微米级的空间精度,但几乎不能穿透几百微米到组织中,不 提到人类头骨。频率在 300 MHz 至 300 GHz 之间的微波 (MW) 填补了这一空白 然而,光波和磁波之间的神经调节却很少被探索。我们提出一个 利用微波裂环谐振器 (SRR) 的微创神经调节装置 设计。 SRR 的周长约为 MW 波长的一半,因此充当谐振器 天线。它以无线方式耦合微波,并将微波集中在间隙处,产生 空间中约 100 μm 的局部电场。我们的科学前提是基于非热神经 微波的抑制效应和SRR的共振效应。 SRR 产生集中 微波并允许神经调节超出微波衍射极限,达到约 100 μm 空间 精确。在拟议的工作中,我们将设计和制造钛的植入式 SRR,因为它具有优越的性能 生物相容性。然后,我们将使用体外原代神经元验证 SRR 在神经抑制方面的潜力, 小鼠体内癫痫模型。通过完成拟议的研究,我们将开发出 生物相容性和可植入的神经调节装置。厘米级的穿透深度由 微波和 SRR 提供的亚毫米空间精度有望实现广泛的生物医学应用。 对于中枢神经系统,我们的技术可以对神经系统进行微创经颅调节 脑内活动和癫痫的临床治疗。具有互补性的多学科团队 汇集专门知识来实施拟议的活动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ji-Xin Cheng其他文献

Ji-Xin Cheng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ji-Xin Cheng', 18)}}的其他基金

2023 Chemical Imaging Gordon Research Conferences
2023 年化学成像戈登研究会议
  • 批准号:
    10605394
  • 财政年份:
    2023
  • 资助金额:
    $ 24.75万
  • 项目类别:
Sub-millimeter precision wireless neuromodulation using a microwave split ring resonator
使用微波开口环谐振器的亚毫米精度无线神经调节
  • 批准号:
    10669784
  • 财政年份:
    2022
  • 资助金额:
    $ 24.75万
  • 项目类别:
High-content High-speed Chemical Imaging of Metabolic Reprogramming by Integration of Advanced Instrumentation and Data Science
通过先进仪器和数据科学的集成进行代谢重编程的高内涵高速化学成像
  • 批准号:
    10543185
  • 财政年份:
    2022
  • 资助金额:
    $ 24.75万
  • 项目类别:
High-content High-speed Chemical Imaging of Metabolic Reprogramming by Integration of Advanced Instrumentation and Data Science
通过先进仪器和数据科学的集成进行代谢重编程的高内涵高速化学成像
  • 批准号:
    10344774
  • 财政年份:
    2022
  • 资助金额:
    $ 24.75万
  • 项目类别:
Mapping Cancer Metabolism by Mid-infrared Photothermal Microscopy
通过中红外光热显微镜绘制癌症代谢图
  • 批准号:
    10491322
  • 财政年份:
    2021
  • 资助金额:
    $ 24.75万
  • 项目类别:
Mapping Cancer Metabolism by Mid-infrared Photothermal Microscopy
通过中红外光热显微镜绘制癌症代谢图
  • 批准号:
    10271761
  • 财政年份:
    2021
  • 资助金额:
    $ 24.75万
  • 项目类别:
Mapping Cancer Metabolism by Mid-infrared Photothermal Microscopy
通过中红外光热显微镜绘制癌症代谢图
  • 批准号:
    10675665
  • 财政年份:
    2021
  • 资助金额:
    $ 24.75万
  • 项目类别:
Vibrational Spectroscopic Imaging to Unveil Hidden Signatures in Living Systems
振动光谱成像揭示生命系统中隐藏的特征
  • 批准号:
    10206200
  • 财政年份:
    2020
  • 资助金额:
    $ 24.75万
  • 项目类别:
Vibrational Spectroscopic Imaging to Unveil Hidden Signatures in Living Systems
振动光谱成像揭示生命系统中隐藏的特征
  • 批准号:
    10660979
  • 财政年份:
    2020
  • 资助金额:
    $ 24.75万
  • 项目类别:
Vibrational Spectroscopic Imaging to Unveil Hidden Signatures in Living Systems
振动光谱成像揭示生命系统中隐藏的特征
  • 批准号:
    10439640
  • 财政年份:
    2020
  • 资助金额:
    $ 24.75万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 24.75万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 24.75万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.75万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.75万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 24.75万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.75万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 24.75万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 24.75万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 24.75万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.75万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了