Mapping Cancer Metabolism by Mid-infrared Photothermal Microscopy

通过中红外光热显微镜绘制癌症代谢图

基本信息

  • 批准号:
    10491322
  • 负责人:
  • 金额:
    $ 38.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-20 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Program Summary While altered cell metabolism is emerging as a hallmark of cancer, there is an unmet need for new tools for quantitation of metabolites. NMR spectroscopy, mass spectrometry, FTIR, and Raman spectroscopy are widely used for molecular detection in tissue extracts or intact tissues. Yet, these tools do not indicate the spatial locations of the analytes inside the cell. We address this unmet need via development of a lock-in free, wide- field mid-infrared photothermal (MIP) microscope. Our technology will enable quantitative vibrational imaging of metabolites in live tumor cells and intact biopsies. In MIP microscopy recently developed in the PI lab (Sci Adv 2016), a visible beam probes the thermal effect (e.g. change of refractive index and thermal expansion) induced by a pulsed infrared beam. The MIP signal is then extracted through a lock-in amplifier. To match the IR/visible illumination area, the PI lab further developed a wide-field MIP microscope in which a complementary metal– oxide–semiconductor (CMOS) camera and synchronization electronics are harnessed for whole-field lock-in detection (Sci Adv 2019). Despite these initial successes, the sensitivity of MIP microscopy is limited by the detection schemes. First, the golden standard lock-in detection misses all the harmonic frequencies in the MIP signal. Second, the well-depth of a typical CMOS camera seriously limits the probe power to 0.01 mW at sample. Thus, many averages are needed to reach a reasonable signal to noise ratio. We overcome these difficulties through two innovations. The first one is to digitize the probe photons received by a fast photodiode. Then, in the frequency domain, a match filter is used to extract all MIP signals at fundamental and harmonic frequencies. The second one is to perform patterned probe illumination and collect photons with a photodiode which has a saturation threshold of tens of mW. Then, a MIP image is recovered by matrix inversion. In this “single-pixel camera” approach, the probe power can be increased by 1000 times, which indicates that the speed can be improved 30 times to reach the same signal to noise ratio of wide field MIP at the shot noise limit. The goal of this R33 proposal is to develop a digital signal processing, single pixel camera MIP microscope and validate its potential for high-content cancer metabolic imaging. In particular, we aim to validate a metabolic switch from glucose-mediated lipogenesis to fatty acids uptake/oxidation in ovarian cancers that become resistant to cisplatin. By accomplishing the proposed studies, we will generate a high-speed hyperspectral mid-infrared photothermal chemical imaging platform that is able to map the live cell metabolism at sub-micron spatial resolution. Metabolic imaging of live drug-resistant cancer cells by this platform opens new opportunities of unveiling hidden signatures that can potentially lead to adaptive therapies that inhibit the development of drug resistance in cancers.
计划概要 虽然细胞代谢改变正在成为癌症的一个标志,但对新工具的需求尚未得到满足。 代谢物的定量。 NMR 光谱、质谱、FTIR 和拉曼光谱广泛应用 用于组织提取物或完整组织中的分子检测。然而,这些工具并没有表明空间 分析物在细胞内的位置。我们通过开发无锁定、广泛的解决方案来解决这一未满足的需求。 场中红外光热 (MIP) 显微镜。我们的技术将使定量振动成像成为可能 活肿瘤细胞和完整活检中的代谢物。 PI 实验室最近开发的 MIP 显微镜 (Sci Adv 2016),可见光束探测引起的热效应(例如折射率的变化和热膨胀) 通过脉冲红外光束。然后通过锁相放大器提取 MIP 信号。匹配红外/可见光 照明区域,PI实验室进一步开发了一种宽视场MIP显微镜,其中互补金属– 利用氧化物半导体 (CMOS) 相机和同步电子设备进行全场锁定 检测(Sci Adv 2019)。尽管取得了这些初步成功,MIP 显微镜的灵敏度仍受到以下因素的限制: 检测方案。首先,黄金标准锁定检测会错过 MIP 中的所有谐波频率 信号。其次,典型 CMOS 相机的井深严重限制了样品处的探头功率为 0.01 mW。 因此,需要多次平均值才能达到合理的信噪比。我们克服了这些困难 通过两项创新。第一个是将快速光电二极管接收到的探测光子数字化。然后,在 在频域中,匹配滤波器用于提取基频和谐波频率的所有 MIP 信号。 第二种是执行图案化探针照明并使用光电二极管收集光子,该光电二极管具有 几十毫瓦的饱和阈值。然后,通过矩阵求逆恢复MIP图像。在这个“单像素 相机”的方法,探针功率可以提高1000倍,这表明速度可以 提高了 30 倍,在散粒噪声极限下达到与宽视场 MIP 相同的信噪比。目标是 这个R33提案是开发数字信号处理、单像素相机MIP显微镜并验证其 高内涵癌症代谢成像的潜力。特别是,我们的目标是验证从 葡萄糖介导的脂肪生成到对顺铂耐药的卵巢癌中脂肪酸的摄取/氧化。 通过完成拟议的研究,我们将产生高速高光谱中红外光热 化学成像平台能够以亚微米空间分辨率绘制活细胞代谢图。代谢 通过该平台对活体耐药癌细胞进行成像为揭示隐藏特征提供了新的机会 这有可能导致抑制癌症耐药性发展的适应性疗法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ji-Xin Cheng其他文献

Ji-Xin Cheng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ji-Xin Cheng', 18)}}的其他基金

2023 Chemical Imaging Gordon Research Conferences
2023 年化学成像戈登研究会议
  • 批准号:
    10605394
  • 财政年份:
    2023
  • 资助金额:
    $ 38.56万
  • 项目类别:
Sub-millimeter precision wireless neuromodulation using a microwave split ring resonator
使用微波开口环谐振器的亚毫米精度无线神经调节
  • 批准号:
    10669784
  • 财政年份:
    2022
  • 资助金额:
    $ 38.56万
  • 项目类别:
High-content High-speed Chemical Imaging of Metabolic Reprogramming by Integration of Advanced Instrumentation and Data Science
通过先进仪器和数据科学的集成进行代谢重编程的高内涵高速化学成像
  • 批准号:
    10543185
  • 财政年份:
    2022
  • 资助金额:
    $ 38.56万
  • 项目类别:
High-content High-speed Chemical Imaging of Metabolic Reprogramming by Integration of Advanced Instrumentation and Data Science
通过先进仪器和数据科学的集成进行代谢重编程的高内涵高速化学成像
  • 批准号:
    10344774
  • 财政年份:
    2022
  • 资助金额:
    $ 38.56万
  • 项目类别:
Sub-millimeter precision wireless neuromodulation using a microwave split ring resonator
使用微波开口环谐振器的亚毫米精度无线神经调节
  • 批准号:
    10516429
  • 财政年份:
    2022
  • 资助金额:
    $ 38.56万
  • 项目类别:
Mapping Cancer Metabolism by Mid-infrared Photothermal Microscopy
通过中红外光热显微镜绘制癌症代谢图
  • 批准号:
    10271761
  • 财政年份:
    2021
  • 资助金额:
    $ 38.56万
  • 项目类别:
Mapping Cancer Metabolism by Mid-infrared Photothermal Microscopy
通过中红外光热显微镜绘制癌症代谢图
  • 批准号:
    10675665
  • 财政年份:
    2021
  • 资助金额:
    $ 38.56万
  • 项目类别:
Vibrational Spectroscopic Imaging to Unveil Hidden Signatures in Living Systems
振动光谱成像揭示生命系统中隐藏的特征
  • 批准号:
    10206200
  • 财政年份:
    2020
  • 资助金额:
    $ 38.56万
  • 项目类别:
Vibrational Spectroscopic Imaging to Unveil Hidden Signatures in Living Systems
振动光谱成像揭示生命系统中隐藏的特征
  • 批准号:
    10660979
  • 财政年份:
    2020
  • 资助金额:
    $ 38.56万
  • 项目类别:
Vibrational Spectroscopic Imaging to Unveil Hidden Signatures in Living Systems
振动光谱成像揭示生命系统中隐藏的特征
  • 批准号:
    10439640
  • 财政年份:
    2020
  • 资助金额:
    $ 38.56万
  • 项目类别:

相似海外基金

Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
  • 批准号:
    BB/Y006380/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.56万
  • 项目类别:
    Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
  • 批准号:
    24K17112
  • 财政年份:
    2024
  • 资助金额:
    $ 38.56万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
  • 批准号:
    2300890
  • 财政年份:
    2023
  • 资助金额:
    $ 38.56万
  • 项目类别:
    Continuing Grant
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
  • 批准号:
    23K06918
  • 财政年份:
    2023
  • 资助金额:
    $ 38.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
  • 批准号:
    23K05758
  • 财政年份:
    2023
  • 资助金额:
    $ 38.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
  • 批准号:
    23K04668
  • 财政年份:
    2023
  • 资助金额:
    $ 38.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Design and Synthesis of Fluorescent Amino Acids: Novel Tools for Biological Imaging
荧光氨基酸的设计与合成:生物成像的新工具
  • 批准号:
    2888395
  • 财政年份:
    2023
  • 资助金额:
    $ 38.56万
  • 项目类别:
    Studentship
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
  • 批准号:
    10761044
  • 财政年份:
    2023
  • 资助金额:
    $ 38.56万
  • 项目类别:
Lifestyle, branched-chain amino acids, and cardiovascular risk factors: a randomized trial
生活方式、支链氨基酸和心血管危险因素:一项随机试验
  • 批准号:
    10728925
  • 财政年份:
    2023
  • 资助金额:
    $ 38.56万
  • 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
  • 批准号:
    10757309
  • 财政年份:
    2023
  • 资助金额:
    $ 38.56万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了